2004
09:09:41
28
Sep
Tue

.

Ξ

= .

5.1.6 Compugen Itd.	; Searc	254.185 Million cell updates/sec		dues	eters: 1017041				edicted by chance to have a pre of the result being printed, al score distribution.	N N	Description	Q8wur29 homo sapien Q7zwh3 brachydanio Q8vdj4 mus musculu Q8wdj4 mus musculu Q8wr05 homo sapien Q8ps1 ovis aries Q8ps1 ovis aries Q8mk4 drosophila Q8mk4 drosophila Q9v609 drosophila Q9v608 drosophila Q9v610 drosophila Q9v610 drosophila Q9v610 drosophila Q9v610 drosophila Q9v610 drosophila
GenCore version Copyright (c) 1993 - 2004	- protein search, using sw model September 27, 2004, 19:19:4	US-09-886-954A-1 score: 2457 e: 1 MTPEDPEETOPLLGPPGGSA	table: BLOSUM62 Gapop 10.0 , Gapext 0.5		number of hits satisfying chosen parameters:	DB seq length: 0 DB seq length: 200000000	-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	<pre>e : SPTREMBL_25:* 1 : sp_archea:* 2 : sp_bacteria:* 3 : sp_hundan:* 4 : sp_hundan:* 5 : sp_invertebrate:* 6 : sp_manmal:* 7 : sp_mhc:* 1 : sp_organelle:* 1 : sp_vartebrate:* 1 : sp_vartebrate:* 1 : sp_vartebrate:* 1 : sp_vartebrate:* 1 : sp_archeap:* 1 : sp_archeap:* 1 : sp_archeap:*</pre>	Pred. No. is the number of results predicted by score greater than or equal to the score of the and is derived by analysis of the total score di	SUMMARIE	Query Score Match Length DB ID	2457 100.0 477 4 QBWUZ9 1411.5 57.4 498 13 Q7ZMH3 1467 57.3 482 13 QAXP6 1167 57.3 482 13 QAXP6 11167 57.3 482 13 QAXP5 1125.5 45.8 246 6 12 QBWU24 946 38.5 45.9 246 6 QBSR21 946 38.5 45.9 246 6 QBSR21 946 38.5 45.9 246 6 QBWU25 179.5 32.1 488 5 QBWCK4 789.5 32.1 488 5 Q9WC09 788.5 32.1 489 5 Q9WC09 788.5 32.1 539 5 Q9WC09 788.5 32.1 539 5 Q9WC07 787 32.0 471 5 Q9WC17 764.5 30.0 488 10 Q93YP9
	OM protein Run on:	Title: Perfect s Sequence:		Searched:	Total num	Minimum D Maximum D	Post-proc	Database	Pri SCC anc		Result No.	1004000000100401

Q9frl3 arabidopsis Q9v848 drosophila Q9v848 drosophila Q9v848 drosophila Q9v848 orsophila Q9v348 drosophila Q8r046 drosophila Q8r046 drosophila Q9v162 drosophila Q9v162 drosophila Q9v162 drosophila Q9v162 drosophila Q9v162 drosophila Q9v162 drosophila Q8rad animonella Q1vbr5 shigella fl Q8fe99 escherichia Q99zi0 bacteroides Q99zi0 bacteroides Q99zi0 bacteroides Q99zi0 bacteroides Q99zi0 bacteroides Q99zi0 bacteroides Q99zi0 bacteroides Q9v2r6 arabidopsis Q8v2r6 arabidopsis Q9v2r6 arabidopsis Q9xev6 salmonella Q8v2r6 arabidopsis Q9xev6 salmonella Q8v2r6 arabidopsis Q9xev6 salmonella	ALIGNMENTS PRT; 477 AA. Created) Last sequence update) Last sequence update) Last sequence update) Last sequence update) Last annotation update) Last annotation update) i, Craniata; Vertebrata; Buteleostomi; catarrhini; Hominidae; Homo. ; Catarrhini; Hominidae; Homo.
Q9FRL3 Q9V848 Q9V848 Q9V848 Q9L48 Q9L48 Q9V215 Q8V215 Q8V215 Q8V215 Q8V215 Q8V216 Q9V360 Q9V360 Q9V360 Q9V362 Q9V372 Q9V3728 Q87299 Q87210 Q872899 Q87210 Q872899 Q87210 Q872899 Q87210 Q87276 Q832092 Q87276 Q832210 Q832215 Q832215 Q832215 Q832215 Q832215 Q832215 Q832215 Q832215 Q832215 Q822220 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q822225 Q8225 Q82225 Q82225 Q82225 Q82225 Q82225 Q82225 Q82225 Q82225 Q82225 Q82225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q8225 Q825 Q8	ALICNM ALICNM reated) ist sequist anno ist anno ist anno craniat Craniat Catarrh membrar membrar is transp: c activit sporter sporter porter o 094801
	data addition of the source source source source source transport port port 1 100 1 100 10
4400444444444400400444400440 8610998884668907790016807844480846 70010988846689779000168686868	PRELIMINARY; (TTEMBLrel. 20, CK (TTEMBLrel. 20, La (TTEMBLrel. 20, La (TTEMBLrel. 20, La (TTEMBLrel. 20, La (TTEMBLrel. 20, La (TTEMBLrel. 20, La (TTEMBLrel. 20, La (TTEMBL)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RELIMIN TTEMELT TTEMELT TTEMELT TTEMELL TTEMELL TTEMELL (Human) (Human) (Human) (Fortein) (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A. (N.A.(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRELIMI PRELIMI 02 (TrEMEL 03 (TrEMEL 03 (TrEMEL 03 (TrEMEL 03 (TrEMEL 03 (TrEMEL 03 (TrEMEL 03 (TrEMEL 03 (TrEMEL 03 (TrEMEL 10 (DC- 10 (DC-
7233 7223 7223 7223 7223 7223 7223 7223	LT 1 2998UZ9 2998UZ9 2088UZ9 2088UZ9 201-MZR-2002 201-MZR-2002 201-MZR-2003 201-0CT-2003 HPOND Saptens Eukaryota, Me Momo Saptens Eukaryota, Me Momo Saptens Fill - national Momo Saptens Fill - sintLARIT EMBL, BCO0032 505 GO:000515 GO; GO:000515 GO; GO:000517 GO; GO:000517 GO; GO:00055 GO; GO:00055 GO; GO:00055 FRON3 FRIMTS, FRO013 PEAM, FO003 PEAM, FO0
ー ー こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	A C C C C C C C C C C C C C C C C C C C

100.0%; Score 2457; DB 4; Length 477; 100.0%; Pred. No. 2.4e-157;

> Query Match Best Local Similarity

Tue Sep 28 09:09:41 2004

us-09-886-954a-1.rspt

QY       2 TPEDPEETQPLLGPPGGSAPRGI         Db       17 TEERRSEQDAYLDKYNKK         Db       17 TEERRSEQDAYLDKYNKK         Db       72 LOLSVEBENGFGAVTLGAAAGG         QY       62 PRLDDAAASNFGAVVTLGAAAGG         QY       122 MLLGGRLJTGLACGVASLVPLDAAGG         QY       132 MFVGRVLTGLASGVTSLVVPLDAAGG         QY       132 MFVGRVLTGLASGVTSLVVPLDAAGG         QY       132 MLAVASSIPPTMLLLSOFGTXRP         QY       132 MLAVASSIPPTMLLLSOFGTXRP         QY       132 MLAVASSIPPTMLLSOFGTXRP         QY       132 MLAVASSIPPTMLLSOFGTXRP         QY       132 MLAVASSIPPTMLLSOFGTXRP         QY       132 MLAVASSIPPTMLLSOFGTXRP         QY       355 ISAPVSQPVTGLASGVTSLUWFIND         QY       355 ISAPVSQPVTAALIMDRXAG         QY       312 TVLVAATQVVFTAAALIMDRXAG         QY       312 TVLVAATQVVFTAAALIMDRXAG         QY       355 ISAPVSQPVDASGIGALMCFMF         QY       372 ULTDFHGLLEDQPSADLAML         QY       372 ULTDFHGLLEDQPSADLAML         QY       373 ULTDFHGLLEDQPSADLAML         QY       374 ULTDFHGLLEDQPSADLAML         QY       373 ULTDFHGLLEDQPSADLAML         QY       411 TAHFEG 476         QY       413 GTVLT
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Tue Sep 28 09:09:41 2004

•

Ξ

us-09-886-954a-1.rspt

<pre>SQ SEQUENCE 266 AA; 29132 MW; 1B3031928863B0FC CRC64; Uuery Match 216 AA; 29132 MW; 1B3031928863B0FC CRC64; Uuery Match 212 Unitarity 47.5%; Score 1167; DB 11; Length 266; Best Local Similarity 83.1%; Pred. No. 6.9e-71; Matches 22; Conservative 20; Mismatches 23; Indels 2; Gaps 2; Matches 222; Conservative 20; Mismatches 23; Indels 2; Gaps 2; OY 212 QHRRQEAMALRFLWGSEEGWEEPPUGAEHOGFQLALLRRPGIYKFPIIGVSLMAFOQLS 270 []; [][][][][][][][][]][][][][][][][][][</pre>	<pre>RESULT 5 RESULT 5 RELIMINARY; PET; 248 AA.</pre>
<pre>DR PROSITE; PS00217; SUGAR_TRANSPORT_2; 1. SQ SEQUENCE 482 AA; 53349 MW; CCFDOCAISF44C976 CRC64; Query Match 57.3%; Score 1407; DB 13; Length 482; Best Local Similarity 59.2%; Pred. No. 9.5e-87; Indels 8; Gaps 3; Matches 282; CONSErvative 68; Mismatches 118, Indels 8; Gaps 3; OY 7 EETOPLIGEPGGSAPRGRVFLAAFAAALGPLSFGFALGYSSPAIPELAKTDNFKLR 63 OY 7 EETOPLIGEPGGSAPRGRVFLAAFAAALGPLSFGFALGYSSPAIPELAKTDNFKLR 63 OY 64 LDDAAASWFGSVVTLGAAAGGVLGGWLVDRAGRKLSLLLGSVFFVGGFAVTAAQDVWML 123 OY 64 LDDAAASWFGSVVTLGAAAGGVLGGWLVDRAGRKLSLLLGSVFFVGGFAVTAAQDVWML 123 OY 64 LDDAAASWFGSVVTLGAAAGGVLGGWLVDRAGRKLSLLLGSVFFVGGFAVTAAQDVWML 123 OY 124 LDDAASWFGSTVTLGAAAGGTLGGVLVDRAGRKLSLLLGSVFFVGGFAVTAAQDVWML 123 OY 124 LDSNOASWFGSTVTLGAAAGGTLGGVLVDRAGRKLSLLLGSVFFVGGFAVTAAQDVWML 123 OY 124 LDNAASWFGSTVTLGAAAGGTLGGVLVDRAGRKLSLLLGSVFFVGGFAVTAADDVWML 123 OY 124 LDNAAGGTLGGVASLVAPVYISEISHTDVRGMLGSFVOLMVVCGILLAYLAGWVLBMW 183 OY 184 LAVLGCVPFSLMLLLMCFMFETFRFLLTOGHRROREAMAALRFLMCSEQGWEDFPIGA- 239 DD 124 EBEGLSTFFPCVMLLFMLFMFETFRFLLTOGKKRARAAALRFLMGSVVDHFWCRQIEANV 243 DD 244 EBEGLSFFFRVMPSITRPLIGVLIMFLQQVTGILNAMSYAFTIFEDAAFFOSERAAVVV 303</pre>	VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4 VOJ4

RESULT 7 QBRTN2 ID 20BTN2 PRELIMINARY; PRT; 497 AA. AC 08BTN2; REMBLrel. 23, Created) DT 01-MAR-2003 (TrEMBLrel. 23, Last sequence update) DT 01-OCT-2003 (TrEMBLrel. 25, Last sequence update) DT 01-OCT-2003 (TrEMBLrel. 25, Last annotation update) DS similar to solute carrier family	<pre>couse). zoa; Rodent a; Rodent a; Rodent a; Rodent aria; Rodent b; Fsugar por b; Fsugar por aria; RS23; Sugar rz; augar rz; aria; RS23; Sugar rz; aria; RS24; RS24</pre>
Db       121       ERAKFKDSSLASVUGVLFTAVAALIMDRAGRLLLVLSGVVMVFSTSAFGAYFKLT       180         QY       344       QGGFGNSSHVALSAPVSAQPVDASVGLAMLAVGSNCLFTAGFAVGMGP-IPWLLMSEIFP       402         Db       181       QGGFGNSSHVALSAPVSAQPVDASVGLAWLAVGSNCLFTAGFAVGWGP-IPWLLMSEIFP       402         Db       181       QGGFGNSSHVALSAPVSAQPVDASVGLAWLAVGSNCLFTAGFAVGWGP-IPWLLMSEIFP       402         Db       181       QGGFGNSSHVALSAPVSAQPVDASVGLAWLAVGSNCLFTAGGPQALWSLLACLRF       235         QY       403       LHVK       406         Db       236       LHLQ       239         Db       236       LHLQ       239	<pre>MEETIN 6 MEETIN FILTINGARY, FLY, 246 A. Meine Meeting Methods and Meeting Meeein Meeting Meeting Meeting Meeting Meeting Meet</pre>

•

Page 4

Tue Sep 28 09:09:41 2004

us-09-886-954a-1.rspt

. Tue Sep 28 09:09:41 2004

:

c

us-09-886-954a-1.rspt

	QY       400       IPPLHVKGVATGICVLINWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFUEFUEFU       459         :               :               :               :               :               :               :               :               :               :               :               :       :               :	RESULT 9 QBMKK4 PRELIMINARY; PRT; 488 AA. AC QBMKK4; PRELIMINARY; PRT; 488 AA. AC 08MKK4; DT 01-OCT-2002 (TrEMELrel: 22, Created) DT 01-OCT-2002 (TrEMELrel: 22, Last sequence update)	ULOUT-2003 (ILEMELIE 2. 23, MARC AT19440P (CG8234-PA). CG8234. Drosophila melanogaster (Fruit fl Bukaryota; Metazoa; Arthropoda; F Neoptera; Endopterygota; Diptera; Ephydroidea; Drosophilidae; Dros NCBT TaxID=7277;	<pre>RN [1] RP SEQUENCE FROM N.A. RA Stapleton M., Brokstein P., Hong L., Agbayani A., Carlson J., RA Champe M., Chavez C., Dorsett V., Dresnek D., Farfan D., Frise E., RA Champe M., Chavez C., Dorsett V., Dresnek D., Farfan D., Frise E., RA George R., Gonzailez M., Guarin H., Kronmiller B., Pariso S., RA Miranda A., Mungall C.J., Nunco J., Pacleb J., Paragas V., Park S., RA Patel S., Phouanenavong S., Wan K., Yu C., Lewis S.E., Rubin G.M.,</pre>	<ul> <li>RA Celniker S.;</li> <li>RU Submitted (UNN-2002) to the EMBL/GenBank/DDBJ databases.</li> <li>RU [2]</li> <li>RP SEQUENCE FROM N.A.</li> <li>RP SEQUENCE FROM N.A.</li> <li>RP SEQUENCE FROM N.A.</li> <li>RR MEDLINE=2016006; PubMed=10731132;</li> <li>RA MAEDLINE=2016006; PubMed=10731132;</li> <li>RA Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., RA Amanatides P.G., Scherer S.E., Inolt R.A., Hoskins R.A., Galle R.F., RA Amanatides P.G., Scherer S.E., Kichards S., Ashburner M., Henderson S.N., RA Sutton G.G., Wortman J.K., Yandell M.D., Zhang Q., Chen L.X.,</li> </ul>	RA Brandon R.C., Rogers YH.C., Blazej R.G., Champe M., Ffeiffer B.D., RA Wan K.H., Doyle C., Baxter E.G., Helt G., Nelson C.R., Miklos G.L.G., RA Abril J.F., Agbayani A., An HJ., Andrews-Pfannkoch C., Baldwin D., RA Ballew R.M., Basu A., Baxendale J., Bayraktaroglu L., Beasley E.M., RA Beeson K.Y., Benos P.V., Berman B.P., Bhandari D., Bolshakov S., RA Borkova D., Botcham M.R., Bouck J., Brokstein D., Bolshakov S., RA Burtis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., RA Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P.,	RA de Pablos B., Delcher A., Deng Z., Mays A.D., Dew I., Dietz S.M., RA Dodson K., Doup L.E., Downes M., Dugan-Rocha S., Dunkov B.C., Dunn P., RA Durbin K.J., Evangelista C.C., Ferriez C., Ferriera S., Fleischmann W., RA Fosler C., Gabrielian A.E., Garg N.S., Gelbart W.M., Glasser K., RA Glodek A., Gong F., Gorrell J.H., Gu Z., Guan P., Harris M., RA Hostins N.L., Harvey D., Heiman T.J., Hernandez J.R., Houck J., RA dottin M., Kalush F., Karpen G.H., Ke Z., Kennison J.A., Ketchum K.A.,	RA Kimmel B.E., Kodira C.D., Kraft C., Kravitz S., Kulp D., Lai Z., RA Lasko P., Lei Y., Levitsky A.A., Li J., Li Z., Liang Y., Lin X., RA Liu X., Mattei B., McIntosh T.C., McLeod M.P., McPherson D., RA Merkulov G., Milshina N.V., Mobarry C., Morris J., Moshrefi A., RA Mount S.M., Moy M., Murphy B., Murphy L., Murzh D.M., Nelson D.L., RA Nelson D.R., Nelson K.A., Nixon K., Nusskern D.R., Pacleb J.M., RA Palazzolo M., Pitteman G.S., Pan S., Pollard J., Puri V., Rese M.G., RA Reinert K., Remington K., Saunders R.D.C., Scheeler F., Shen H.,
QY       407 GVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKT 466         Db       421 GVASGLCVLYNWLTAFVLTNYFLLAVNAFGLQVPFFFFSAICLLSLLFTGCCVPETKGRS 480         QY       467 LEQITAHFEGR 477         QY       467 LEQITAHFEGR 477         Db       481 LEQITAHFEGR 477         Db       481 LEQIEAFFHTR 491	ACC 10		RA Isogai T., Ota T., Nishikawa T., Hayashi K., Otsuki T., Sugiyama T., R. Suzuki Y., Nagai K., Sugano S., Ishii S., Kawai-Hio Y., Saito K., R. Yamamoto J., Makamatu A., Nakamura Y., Kojima S., Nagahari K., R. Masuho Y., Ono T., Okano K., Yoshikawa Y., Actsuka S., Sasaki N., R. Hattori A., Okumura K., Iwayanagi T., Ninomiya K.; R. "NEDO human CDNA sequencing project. "Ninomiya K.; R. Submitted (MAR. 2002) to the EMBL/GenBank/DBJ databases C sumertifika Locarton. INTERAN. MEMBANDE PROTEIN (BY SIMIARITY).	CC -!- SIMILARITY: BELONGS TO THE SUGAR TRANSPORTER FAMILY. DR EMBL, AX074836; BAC11235.1; DR GO; GO:0016021; C:integral to membrane; IEA. DR GO; GO:0005515; F:sugar porter activity; IEA. DR GO; GO:0008643; F:transporter activity; IEA. DR GO; GO:0008643; F:transporter activity; IEA. DR GO; GO:0008643; F:transporter transport; IEA.	DR INTERFRO; IFR005928; Sub_transporter. DR INTERFRO; IFR005829; Sugar transporter. DR INTERPRO; IFR005829; Sugar transporter. DR Pfam; PF00083; sugar tri 1. DR PRINTS; PR00171; SUGARTRNSPORT. DR PR05TTE; PS008150; MFS; 1. DR PR05TTE; PS00216; SUGAR TRANSPORT 1; 1. DR PR05TTE; PS00217; SUGAR TRANSPORT 2; 1. CR PR05TTE; PS00217; SUGAR TRANSPORT 2; 1. DR PR05TTE; PS00217; SUGAR TRANSPORT 2; 1. CR PR05TTE; PS00217; SUGAR TRANSPORT 2; 1. DR PR05TTE; PS00217; SUGAR TRANSPORT 2; 1.	aes Mat Mat	5.1 IPSLORAAPPAPRLDDAASWPGAVYTLGAAAGGVLGGWLVDRAGRKLSLLLCSVPFVAG []::]: ] ] : [] ] : [] ] ] ] ] ] ] ] ] ]	171       LAYLAGWULEWRWLAVLGCVPPSLMLLIMCEMPETPRFLICHRROEAMALRELWGSEQ         171       LAYLAGWULEWRWLAVLGCVPPSLMLLIMCEMPETPRFLICHRROEAMAALRELWGSEQ         183       SI'N

----

us-09-886-954a-1.rspt

Db 30 LAALSVSLCSLVVGEVSAYTSPALVSMTDRTITSFEVTKDAGSWVGGIMPLAALAGGITG	QY     B8     GMLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVMMLLGGRLLTGLACGVASLVAPVYISE       Q        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :	QY       148       IAYPAVRGLLGSCVOLMVVVGILLAYLAGWVLBWRMLAVLGCVPPSLMLLLMCFMPETPR         Q       148                                         D       150       TLQPEVRGTLGLLPTALGNIGILVCYVAGSPMNWSMLAFLGAALPVPFLILMTIETPETPR	208	DP 210 WFVRIGGERARKALKWLRGKEADVEPELKELMOSQADADRQATQNTCLELFKRNNL-KP QY 257 FIIGVSLMAFQQLSGVNAVMFYAETIFEEA-KFKDSSLASVVVGVIQVLFTAVAALIMDR   ;                   ;         .	269	QY       316       AGRRLLLULSGUVWNFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGLAMLAV         1         ::         :                   1       :        :                            1       :        :                            1       :               :                            1       :               :                :                 :          1       :               :               :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :                 :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :  <td< th=""><th></th><th>DU 3/1 LUEVIIILGESLGEGELEWLMMGELLERKIRGEAGSVVTARNWECTEVVTKTEQDLTVA OV 436 RPYGAEWLASARCTESVLERVLERVLERVESKVLEDTTALEDEDE 277</th><th>311 GAHGAFWLFGAICIVGLFFVIFVEFTRGKSLEELERNOMGR</th><th>RESULT 10</th><th>286P59 PRELIMINARY; PRT; 506 AA. AC ORFP59.</th><th>DT 01-UUN-2003 (TrEMBLrel. 24, Created) DT 01-UUN-2003 (TrEMBLrel. 24, Last sequence update) DT 01-OUT-2003 (TrEMBLrel. 24, Last sequence update)</th><th></th><th>Eukaryota; Metazoa; Arth Neoptera; Endopterygota;</th><th></th><th></th><th><pre>Stapleton M., Brokstein P., Hong L., Agbayani A., Carlsc Champe M., Chavez C., Dorsett V., Dresnek D., Farfan D.,</pre></th><th>George R., Gonzalez M., Guarin H., Kronwiller B., Li P., Liao G Miranda A., Mungall C.J., Nunco J., Pacleb J., Paragas V., Park Derel S Dervisionaryon C wash V. V. C Touris C Devis</th><th></th><th>EMBL; BT003466; AA039469.1;</th><th>DR GO; GO:0005351; F:sugar porter activity, IEA. DR GO; GO:0005215; F:transporter activity; IEA. DR GO: GO:000843: D:arbhhvdarb transport. Th</th><th>DR InterPro; IPR00714; MPS. DR InterPro; IPR007114; MPS. DR InterPro; IPR00588; Suit rearenorter</th><th>DR InterProj IPR00363; Sugartranspt. DR InterProj IPR005829; Sug_transporter.</th><th>DK PRINTS; PROUSS; SUGAT LY; 1. DR PRINTS; PROUS17; SUGRTENSPORT.</th><th>DR FLOKTER PS0850, MFS; 1. DR PROSITE; PS00216; SUGAR TRANSPORT 1; 2. DR PROSITE; PS00216; SUGAR TRANSPORT 2: 1.</th></td<>		DU 3/1 LUEVIIILGESLGEGELEWLMMGELLERKIRGEAGSVVTARNWECTEVVTKTEQDLTVA OV 436 RPYGAEWLASARCTESVLERVLERVLERVESKVLEDTTALEDEDE 277	311 GAHGAFWLFGAICIVGLFFVIFVEFTRGKSLEELERNOMGR	RESULT 10	286P59 PRELIMINARY; PRT; 506 AA. AC ORFP59.	DT 01-UUN-2003 (TrEMBLrel. 24, Created) DT 01-UUN-2003 (TrEMBLrel. 24, Last sequence update) DT 01-OUT-2003 (TrEMBLrel. 24, Last sequence update)		Eukaryota; Metazoa; Arth Neoptera; Endopterygota;			<pre>Stapleton M., Brokstein P., Hong L., Agbayani A., Carlsc Champe M., Chavez C., Dorsett V., Dresnek D., Farfan D.,</pre>	George R., Gonzalez M., Guarin H., Kronwiller B., Li P., Liao G Miranda A., Mungall C.J., Nunco J., Pacleb J., Paragas V., Park Derel S Dervisionaryon C wash V. V. C Touris C Devis		EMBL; BT003466; AA039469.1;	DR GO; GO:0005351; F:sugar porter activity, IEA. DR GO; GO:0005215; F:transporter activity; IEA. DR GO: GO:000843: D:arbhhvdarb transport. Th	DR InterPro; IPR00714; MPS. DR InterPro; IPR007114; MPS. DR InterPro; IPR00588; Suit rearenorter	DR InterProj IPR00363; Sugartranspt. DR InterProj IPR005829; Sug_transporter.	DK PRINTS; PROUSS; SUGAT LY; 1. DR PRINTS; PROUS17; SUGRTENSPORT.	DR FLOKTER PS0850, MFS; 1. DR PROSITE; PS00216; SUGAR TRANSPORT 1; 2. DR PROSITE; PS00216; SUGAR TRANSPORT 2: 1.
Simpson M., Skupski M.P., Smith T., apleton M., Strong R., Sun E., er R., Venter E., Wang A.H., Wang X.,	Wang ZY., Wassarman D.A., Weinstock G.M., Weinsenbach J., Williams S.M., Woodage T., Worley K.C., Wu D., Yang S., Yao Q.A., Ye J., Yeh RF., Zaveri J.S., Zhan M., Zhang G., Zhao Q., Zhong L., Zheng X.H., Zhong F.N., Zhong G., Zhao Q., Zhao L.,	Gibbs R.A., Myers E.W., Rubin G.M., Venter J.C., "The genome sequence of Drosophila melanogaster."; Science 287:2185-2195(2000).	.D., Kronmiller B., Wan K.H., Holt R.A., D., Amanatides P.G., Brandon P.C., Poress V	A Banzon J., An H., Baldwin D., Banzon J., Beeson K.Y., Busam D.A., A Carlson J.W., Center A., Champe M., Davenport L.B., Dietz S.M., A Dodson K., Dorsett V., Doup L.E., Doyle C., Dresnek D., Farfan D.,	Galle R.F., Garg N.S., George R.A., Hoskins R.A., Hostin D., Howland T.J.,	<pre>^ ALUSE U., UI F., MALTEL B., MOSHTEI A., / Murphy B., Nelson C., Nelson K.A., Nunoo J., / Park S., Patel S., Pfeiffer B., / Divi V. DiAhivar, C., Chiller B.,</pre>	www.yory.gut.v., Alcharus S., Scheeler F., R., Svirskas R., Tector C., Tyler D., J.S., Smith H.O., Venter J.C., Rubin G.M.; hila melanocaster opnome ".	to the EMBL/GenBank/DDBJ databases.	., Matthews B.B., Bayraktaroglu L., Campbell K., ., Kaminker J.S., Prochnik S.E., Smith C.D.,	Tupy J.L., Bergman C., Berman B., Carlson J.W., Celniker S.E., Clamp M., Drysdale R., Emmert D., Fise E., de Grey A., Harris N., Kronmiller B., Marshall R. Millhurr G. Pichter, J. Daveoo	E., Shu S., Smutniak F., Whitfield S., t W.M., Rubin G.M., Mungall C.J., Lewis S.E.;	phila melanogaster genome."; to the EMBL/GenBank/DDBJ databases.	SEQUENCE FROM N.A. Adams M.D., Celniker S.E., Gibbs R.A., Rubin G.M., Venter C.J.; Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.		L Submitted (SEP-2002) to the EMBL/GenBank/DDBJ databases. C -!- SUBCELLULAR LOCATION: INTEGRAL MEMBRANE PROTEIN (BY SIMILARITY).	NGS TO THE SUGAR TRANSPORTER FAMILY. 2591.11 2715 1.22	есть	ugar porter activity, IEA. ransporter activity, IEA.	arbohydrate transport, IEA. . MFS.	Sub_transporter. Sugar_transpt.	sugar raj cug_ciansporter. .; SUGRTRNSPORT.	SP; 1. 5; 1.	PROBITE; PS00214; SUGAR TRANSPORT 1; 2. PROBITE; PS00217; SUGAR TRANSPORT 2; 1. SUGAT Transport: Transmontane: Transmont	53088 MW; 6554C96EBEAIC08B CRC64;	32.7%; Score 804.5; DB 5; Length 488; .larity 37.4%; Pred. No. 3.1e-46; Conservative 81; Mismatches 177; Indels 31; Gaps 5;

X.
ų.
0
2004
ы
4
σ
0
••
δ
õ
-
28
2
Ο.
Sep
÷
01
Tue
5
É.
• •

.

<pre>RA Hostin D., Houston K.A., Howland T.J., Wei MH., Ibegwam C., RA Jalali M., Kalush F., Karpen G.H., Ke Z., Kunp D., Laiz Z., Lasko P., Lei', Y. Levitsky A.A., Li J., Li Z., Liang Y., Liang Y., Liang Y., Liang Y., Laku Lasko P., Lei', Y. Levitsky A.A., Li J., Li Z., Liang Y., Liang Y., Liang Y., Liang Y., Liang Y., Liang Y., Laku R. Mount S.M., Wolteni B., MCIntosh T.C., MCLEN D., Moslrei A., Merkulov G., Mullahina N.V., Mobarty C., Morris J., McPhareon D., R. Nount S.M., Wyl M., MRDY B., MUTPY L., Murzy D.M., Nelson D.L., Nelson D.R., Nelson X.A., MIXOR K., Nauskern D.R., Pacleb J.M., R. Nelson D.R., Nelson X.A., MIXOR K., Nauskern D.K., Pales H., Shne H., R. Shie B.C., Sident K.A. Sunders R.D.C., Scheler F., Shon H., R. Shie E.C., Sident K., Aminers R.D.C., Scheler F., Shen H., C., Shie S.C., Sident K., Sannoers R.D.C., Scheler F., Shen H., C., Shers R., Factor C., Strapecon M., Skrygki M.P., Smith T., She S., Sper E., Spradling A.C., Steplecon M., Skrygki M.P., Smith T., R. Milliam S.M., Woodger T., Wannes R., Mang A.H., Wang X., William S.M., Woodger T., Wannes R., Mang A.H., Wang X., Milliam S.M., Woodger T., Sthong G., Zhao Q., Zhan Q., Zhan Y., R. Milliam S.M., Woodger T., Nachog G., Zhao Q., Zhan Q., Zhan Y., R. Gibbs R.A., Wyers B.W., Rubin G.M., Venter J.C., The genome sequence of Droophila melanogasterr.', The genome sequence of Droophila melanogasterr.', R. R. Shuka S.J., Woodsof J. J Sheng Y. H.R. F., Saveri J.S., Zhan M., Zhan G., Zhao Q., Zheng L., R. R. Shuka S.J., Suotoston S. Thaneshare IRN, K. Shuka S., Thu. R. Scher S.J., Shotoston S., Pant S., Wang S., Thu. R. Scher S.J., Shotoston S., Shuka S., Thurak T.Y., Sher S.M., Shuka S., Tanapata, M., Zhan M., Zhan G., Zhao Q., Zheng L., R. Gol GO:0005015; Fisuara To Analysis S., Thu. R. Scher S.J., Shotoston S., Shata S., Tanaka S., Wang S., Wang S., W. R. Scher S.J., Shotoston S., Shata S., Wang S., Wang S., Wang S., W. R. Shotoston Statestand D.A., Wang S., Shuka T., Shuka T., R. Rooostonstati Fisuara To Mand Shata Shata Shata Shata Sha</pre>	Query Match32.14Score 788.5; DB 5; Length 489; Matches 172; Conservative 76; Mismatches 183; Indels 31; Gaps 5; Matches 172; Conservative 76; Mismatches 183; Indels 31; Gaps 5; Db 30 LAALSVSLGSLVVGFVSATTSPALVSMTDRNITSFEVTQPAGSWVGGIMPLAGLAGGIAG 89 OV 88 GwLUVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLINGLACGIAG 89 Db 90 GPLIEYLGRRNTILLATAVPF1VSSLLIACAVNVAW/LGGRLINGLACGUASLSLPYYLGE 149 D 90 GPLIEYLGRRNTILLATAVPF1VSSLLIACAVNVAW/LGGRLINGGRCVASLSLPYYLGE 149 Db 90 GPLIEYLGRRNTILLATAVPF1VSSLLIACAVNVAW/LGGRLINGGRCVASLSLPYYLGE 149 Db 90 GPLIEYLGRRNTILLATAVPF1VSSLLIACAVNVAW/LGGRLINGGRCVASLSLPYYLGE 149 DD 90 GPLIEYLGRRNTLLATAVPF1VSSLLIACAVNVAW/LGGRLINGGRVGIASLSLPYYLGE 149 DD 90 GPLIEYLGRRNTLLATAVPF1VSSLLIACAVNVAW/LGGRLINGGRVGGRNSLSLPYYLGE 149 DD 90 GPLIEYLGRRNTLLATAVPF1VSSLLIACAVNVAM/LGGRFLAGGCVGIASLSLPYYLGE 149 DD 90 GPLIEYLGRRNTLLATAVPF1VSSLLIACAVNVAM/LGGRFLAGGCVGIASLSLPYYLGE 149 DD 90 GPLIEYLGRRNTGLLEPTARGSCUDAVVGIAVVAMVLGGRFLAGGCVGIASLSLPYYLGE 149 DD 150 TVQPEVGTIGLLPTAFGNIGILLATAGWLWARNVLGGRFLAGGRVGIASPHALAVLAMVLGGRFLAGGVGIASSFHALAVLAM DD 208 FLLTGHRRDEDAAALARLAKALKALKALAKALKALKALAKALKALKALAKALA
Query Match       32.14; Score 795.5; DB 5; Length 506; Best Local Similarity 37.44; Pred. No. 3.3.4-45; Matches 173; Conservative 75; Miamatches 133; Indels 31, Gape 5;         QY       28 LARFAALGELSFGFALGYSSALFSELQNARPAREDEDAAASFFGAVACTVC 87         QY       28 LARFAALGELSFGFALGYSSALPSELQNARPAREDEDAAASFFGAVACTVC 87         QY       28 LAALSVELGSLUVGFVSATTSPALVSWTDBALTSFEVTCDAGSWOGTIKELAGLAGGIAG 106         QY       88 GWLUPARGERVITAANUWMLICGRELLACIAGIAGIAG 106         QY       107 GPLIERICLARTIATIVENUSTLIACUVUTALOWILLGGRELLAPECGIASLUVATICE 147         DD       107 GPLIERICLARTIATIATIVENCIFICACOLASLUVATACIAGALIPUPELLIAFER 207         DD       107 GPLIERICLARTIATIATIATIATIATUAGUVUSTLIACUVALUGARILPOPELLIAFLIAFER 207         DD       167 TUQBHVBGTALAMARENTBACKINAANAAFLAGAALDVPFLLIMELLPERFR 206         DD       167 TUQBHVBGTALAMARGSGGMEDPTGARGFFLAAPCTONAGTMALM         DD       167 TUQBHVBGTALAWLBGKGANDVERTLACUVUNAMALACTUREA         DD       208 FLLINDING ADAVETTRACWISCHAASONDARGANDVERTLACTUAGALANDVERT 226         DD       277 WFORDLEERARALAWLBGKGANDVERTLACUVUNAMALAGALANLANDR         DD       277 WFORDLEERARALAWLBGKGANDVERTLACUVASONDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDARGANDA	

2004
0
0
2
41
σ
õ
••
σ
ö
œ
2
~
ep
Ψ.
õ
æ
Tue
2
-

us-09-886-954a-1.rspt

AGRRLLLUVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGLAWLAV 375 28 LAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAAASWFGAVVTLGAAAGGVLG 398 LAALSVSLGSLVVGFVSAYTSPALVSMTDRNITSFEVTQDAGSWVGGIMPLAGLAGGIAG 88 GWLVDRAGRKLSLLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVAPVYISE 637 LSISLGLMFFQQFSGINAVIFYTVQIFKDAGSTIDGNLCTIIVGIVNFLATFIGIVLIDR637 LSISLGLMFFQQFSGINAVIFYTVQIFKDAGSTIDGNLCTIIVGIVNFLATFIGIVLIDR 208 FLLTQHRRQEAMAALRFLWGSEQGWE-------DPPIGAEQSFHLALLRQPGIYKP 257 FIIGVSLMAFQQLSGVNAVMFYAETIFEEA-KFKDSSLASVVVGVIQVLFTAVAALIMDR 458 GPLIEYLGRRNTILATAVPFIVSSLLIACAVNVAMVLCGRFLAGFCVGIASLSLPVYLGE 518 TVOPEVRCTLGLLPTAFGNIGILLCFVAGSFMNWSMLAFLGALPVPFLILMFLIFBTPR 148 IAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPETPR 578 WFVGRGLEERARKALKWLRGKEADVEPELKGLMRSQADADRQASRNTMLELLKLNNL-KP -1- SIMILARITY: BELONGS IN THE GRAL MEMBRANE PROTEIN (BY SIMILARITY). EMBL, AE003825; AE50632 TO THE SUGAR TRANSPORTER FAMILY. FlyBage; FEGNUNGATS Campbell K. Misra S., Crosby M.A., Matthews B.B., Bayraktaroglu L., Campbell K. Hradecky P., Huang Y., Kaminker J.S., Prochnik S.E., Smith C.D., Tupy J.L., Bergman C., Berman B., Carlson J.W., Celniker S.E., Clamp M., Drysdale R., Emmert D., Frise E., de Grey A., Harris N., Kronmiller B., Marshall B., Millburn G., Richter J., Russo S., Searle S.M.J., Smith E., Shu S., Smutniak F., Whitfield E., Abhurner M., Gelbart W.M., Rubin G.M., Mungall C.J., Lewis S.E., "Annotation of Ensophila melanogaster genome.", Submitted (MAR-2000) to the EMEL/GenBank/DDBJ databases. Phouanenavong S., Pittman G.S., Puri V., Richards S., Scheeler F., Stapleton M., Strong R., Svirskas R., Tector C., Tyler D., Miliams S.M., Zaveri J.S., Smith H.O., Venter J.C., Rubin G.M.; "Sequencing of Drosophila melanogaster genome."; Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases. SEQUENCE FROM N.A. Adams M.D., Celniker S.E., Gibbs R.A., Rubin G.M., Venter C.J.; submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases. Length Indels PROSITE; PS50850; MFS; i. PROSITE; PS00216; SUGAR TRANSPORT 1; 2. PROSITE; PS00216; SUGAR TRANSPORT 2; 1. SUGAT transport; Transmembrane; Transport 1: SEGUENCE 857 AA; 95188 MW; 8408E1191B8B7A5F CRC64; 697 AGRKILLYVSDIAMVLTLFVLGGFFYCKTYGP-DVSH----GO, GOC, 016021, C:integral to membrane, IEA. GO; GO:0005351; F:sugar porter activity; IEA. GO; GO:0005215; F:transporter activity; IEA. GO; GO:0008543; P:carbohydrate transport; IEA. InterPro; IPR007114; MFS. InterPro; IPR005828; Sub_transporter. InterPro; IPR005829; Sug_transporter. InterPro; IPR005829; Sug_transporter. PRINF; PR00171; SUGFTNSPORT. InterPro; IPR00171; SUGFTNSPORT. PRINF; PR00171; SUGFTNSPORT. DB 5; 76; Mismatches 183; 32.1%; Score 788.5; DB 5 37.2%; Pred. No. 6.6e-45; ... il Similarity 37.2 172; Conservative SEQUENCE FROM N.A. SEQUENCE FROM N.A. 316 Query Match Best Local { FlyBase Matches ഹ STAR STARTS STAR đ q g g  $\mathcal{S}$ g q 8 8 8  $\mathbf{a}$ 8 Mans.MD_C_CENTRET_SIS. HOLE R.A. FVANS C.A., GOCAYNE J.D., Mans.MD_C_CENTRET SIS. HOLE R.A. FVANS C.A., GOCAYNE J.D., Mans.MD_C. CENTRET SIS. HOLE R.A. FVANS C.A., GOCAYNE J.D., Mans.MD_C. WILLER J. MD_L. J. MANGLIM.D., ZhANG G., CHEN L.X., B. Brandon R.C., ROGETS Y.-H.C. Blazel R.G., CHEN M., HENDER M., FREIFEF B.D., Man K.H., Doyle C., BAXERE R.G. 4 Helt G., NELSON C.R. Miklos G.L.G., Man K.H., Doyle C., BAXERE R.G. 4 Helt G., NELSON C.R. Miklos G.L.G., Man K.Y., Doyle C., BAXERE R.G. 4 Helt G., NELSON C.R. Miklos G.L.G., AD ENEVAN D., BEUR M., BARUM B.P., BANDATI D., BOLBHAKON S., Ballew R.M., Cawley S., Dahlke C., Davenport L.B., Davies P., N. K.C. Busan D.A., MLLE H. -J., ANDERSEND D., BOLBHAKO S., BUTLIS K.C. BURNE D.A., MLLE H. H. -Gadiu P., BOLILAF P., R.A CHERY J.M., CAWLEY H. Cadiu E., Center A., Chandra I., Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P., M. Cherry J.M., Cawley S., Dahlke C., Davenport L.B., Davies P., R.A Dodoon K., Doup L.S., Downe M., Dugan-Rocha S., Dunkov B.C., Dunn P. R.A Dodoon K., Doup L.S., Downe M., Dugan-Rocha S., Dunkov B.C., Dunn P. R.A Dodoon K., Doup L.S., Downe M., Dugan-Rocha S., Dunkov B.C., A HOLTIN K.J. FWAVED D., Helian T.J., Hennadez J. R. HARTIS M., HORTIN K.J. HARVEY D., Helian T.J., Hennadez J. R. HARTIS M., A HARTIS M., HOURDON T. GU Z., GULAR J., LI Z., MILP D., LAI Z., Jalali M., Kalush F., Kadiuf T.J., MAINA T.J., MENAVED J.A., KIMMED B.E., Kadita C.D., KTARE C., MORTIS J., MOSHEFI A., MOURT S.M., MOY M., MUZHY P., MUZHY D., PULI V., REESE M.G., A HARLIDV G., MILINHY B., MUTPHY L., MUZHY D., MILT, Y. RA LIBERD D.R., NEILMER F., MULTH J., YANG S., YAD D. J., MILLIMAR S., SIGHERD M., SILEND D., KARAN, KIMMED B.E., Soidira C.D., KTARE C., MOLTIS J., MOSHEFI A., MOURT S.M., WOY M., MUZHY B., MUTPHY L., MUZHY D., LAI Z., MOURT S.M., MOUND M., MUZHY B., MUTPHY L., MUZHY D., WILL S., SHAFT D., RA SIMPE P.C., SIGHELDOM M., SILEND J.A., KARAN, RA SINESAR F., REMINGOR K.A., NISSKERD J.A., KARAN, RA SINESAR F., REMINGOR K.A., NISSKERD J.A., KARAN, Celniker S.R., Adams M.D., Kronmiller B., Wan K.H., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Brandon R.C., Rogers Y., Banzon J., An H., Baldwin D., Banzon J., Beeson K.Y., Busam D.A., Carlson J.W., Center A., Champe M., Davenport L.B., Dietz S.M., Dodson K., Dorsett V., Doup L.E., Doyle C., Dresnek D., Farfan D., Ferriera S., Frise E., Galle R.F., Garg N.S., George R.A., Gonzalez M., Houck J., Hoskins R.A., Hostin D., Howland T.J., Ibegwam C., Jalali M., Kruse D., Li P., Mattei B., Moshrefi A., McIntosh T.C., WO, W., Murphy B., Nelson C., Nelson K.A., Numoo J., Pacleb J., Paragas V., Park S., Patel S., Pfeiffer B., CG30035 protein. CG30035 OR CG7797 OR CG7801. Drosophila melanogaster (Fruit fly). Bukaryota; Metazoa; Arthropoda; Harapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea; Drosophilidae; Drosophila. NCBL_TaxID=7227; 477 472 431 GahGaFWLFFGAICFVGLFFVIIYVPETQGKTLEDIERKMMGR 436 RPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQITAHFEGR Last sequence update) Last annotation update) A 857 Created) PRT; STRAIN-Berkeley; MEDLINE=20196006; PubMed=10731132; 01-MAY-2000 (TrEMBLrel. 13, 01-OCT-2002 (TrEMBLrel. 22, 01-OCT-2003 (TrEMBLrel. 25, PRELIMINARY; [1] SEQUENCE FROM N.A. [2] SEQUENCE FROM N.A. Q9V608 09V608 RESULT 12 Q9V608 q  $\delta$ 

5

31; Gaps

857;

457 147 517 207 577

87

256 636 315 696 738

---LGWLPL

Tue Sep 28 09:09:41 2004

us-09-886-954a-1.rspt

---QKQDAAQVVSLGWLPVASLCLFIIMESIGYGPVPWLMMGELFATD 455 405 VKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKG 464 295 AELRETDRETKANKVNVWAALNRPVTRKALAISMGLMFFQQVCGINAVIFYASRIFLEAN 354 TGIEAEWATILIGIMQVVATEVSTLVVDKLGRRILLLASGISMAISTTAIGVYFFL---- 410 PGNSSHVAISAPVSAQPVDAS - - VGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLH 404 AVNVSMLYASRFILGIAGGAFCVTAPMYTGEIAQKEIRGTLGSFFQLMITIGILFVYAVG 234 -----DPPIGAEQSFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAK 287 FK-DSSLASVVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGG 346 | | : : || : : || : : TSSTPHDQENLGNMVHTSTSNNSQKWPQYVAALAAAGGAFAAGTVLGWTSPAETEIVDR 117 AODVWMLLGGRLLFTGLACGVASLVAPVYISEIAYPAVRGLLGSCVOLMVVVGILLAYLAG 2 TPEDPEETQPLLGPPGGSAPRGRR - - - - VFLAAFAAALGPLSFGFALGYSSPAIPSL-QR 57 AAPPAPRLDDAAASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLLCSVPFVAGFAVITA 177 WVLEWRWLAVLGCVPPSLMLLLMCFMPETPRFLLTQHRROEAMAALRFLWGSBQGWE----Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases. -!- SUBCELLULAR LOCATION: INTEGRAL MEMBRANE PROTEIN (BY SIMILARITY). -!- SIMILARITY: BELONGS TO THE SUGAR TRANSPORTER FAMILY. 32.1%; Score 788; DB 5; Length 539; 36.2%; Pred. No. 4.4e-45; tive 95; Mismatches 183; Indels 539 AA; 58413 MW; A2F4814DBF676BBD CRC64; Last sequence update) Last annotation update) EMBL, AE003540; AAF49874.1; -. EMBL, AF003540; AAF49874.1; -. EMBL, AT19564; AAMS0218.1; -. ErlyBase; PEP00036316; CG10960. GO; GO:0016021; C:integral to membrane; IEA. GO; GO:0005315; F:utgar porter activity; IEA. GO; GO:0005215; F:utransporter activity; IEA. GO; GO:0005215; F:utransporter activity; IEA. GO; GO:000643; P:carbohydrate transport; IEA. 471 AA. Sugar transport; Transmembrane; Transport. ••• PROSITE, PS50850; MFS; 1. PROSITE; PS00217; SUGAR_TRANSPORT_2; 1. InterPro; IPR003663; Sugar transpt. InterPro; IPR005829; Sug transporter. Pfam, PF00083; sugar tr; 1. PRINTS; PR00171; SUGRTRNSPORT. TIGRPAMS; TIGR00879; SP; 1. InterPro; IPR007114; MFS. InterPro; IPR005828; Sub_transporter. :: Created) PRT; 23, 23, 25, 527 465 KTLEQITAHFEG 476 Conservative :: PRELIMINARY; (TrEMBLrel. (TrEMBLrel. (TrEMBLrel. **KSLNEIQQELAG** Similarity 01-MAR-2003 01-OCT-2003 CG10960-PA. .. .. 01-MAR-2003 Best⁻Local Simi Matches 178; SS 175 288 355 347 411 456 516 234 SEQUENCE CG10960. Celniker Query Match 28 I QH6 ; **08IQH6** RESULT 14 Q8IQH6 å q g g 2 g à 8 å  $\mathcal{S}$ g  $\mathcal{S}$ qq δ qq  $\mathcal{S}$ 8 8 K STRAINBERKEley. KK STRAINBERKEley. KK STRAINBERKEley. KK STRAINBERKEley. KK Manatides F.G., Scherer S.E., Lip FW., Hoskins R.A., Gocayne J.D., Adams M.D. Cehniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Adams J.C. Cehniker S.E., Holt R.A., Evans G.A., Gocayne J.D., Adams J.C. Charter S.E., Richtads S., Ashburner M., Henderson S.N., Sutcon G.G., Wortman J.R., Yandell M.D., Zhang Q., Chen L.X., B. Brandon R.C., Bogers Y.-H.C., Blazef R.G., Champe M., Feliffer B.D., Ran K.H., Doyle C., Baxter E.G., Helt G., Champe M., Feliffer B.D., Adril J.F., Agbayani A., An H.-J., Andrews-Ffamkcoch C., Baldwin D., B. Berson K.Y. Bensu A., Baxundal B.D., Baytaktarogu L., Belshakov S., Berson K.Y. Bensu A., Baxundal B.D., Baytaktarogu L., Belshakov S., Berson K.Y. Bensu A., Baxunda B.D., Burtis K., B. Burtis K.C. Busan D.A., Burtler H. -Gadieu J., Bolshakov S., Burtis K.C. Busan D.A., Bultler H. -Gadieu S., Center A., Chandra I., Adoson K., Doup L., Dwomes M., Dugan-Rocha S., Dunkov B.C., Dunn P., R.A. Gonger, J.M., Cawley S., Baltler H.M., Glaster K., B. Burtis K.C., Buang S., Mays A.D., Dew I., Dietz S.M., A doffer A., Gong F., Gorreil J.H., Gu Z., Guan P., Harris M., Hestin D., Harvey D., Heinan T.J., Henzudez J.K. Houck J., A fostin D., Harvey D., Heinand T.J., Wei M.-H., Ciabeut K., A diali M., Ralush F., Karpen G., Mays A.M.-H., Maswer K., A diali M., Ralush F., Karpen G., Marshin D., Lai Z., Lisko P., Lei Y., Levitsky A.A., Li J., Li Z., Liang Y., Lin X., A meelin D., Houston K.A., Musphy S., Mansheff A., A destin D., Harvey D., Heinand T.J., Wei M.-H., Reisen H., A diali M., Ralush F., Karpen G., Kravitz S., Kulp D., Lai Z., Lasko P., Lei Y., Levitsky A.A., Li J., Li Z., Liang Y., Lin X., A destin D., Harvey D., Heinand T.J., Mei M.-H., Zhego J.M., A destin D., Harvey D., Heinand T.J., Wei M.-H., Kasheffer F., Salali M., Strong R., Sulpski M.P., Shue B.C., Siden F., Kasher K., Musskern D.M., Kether H., A barazolo M., Pittman G.S., Pan S., Pollard J., Liu Z., Liang Y., Liu X., Mater B., Kandre Y., Marsher M., Wei 339 TCFVIYILGFSLGFGFIFNLMMGEILPAKIRGSAASVATAFNWFCTFVVTKTFQDLTVAM 798 376 GSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVL 435 Stapleton M., Brokstein P., Hong L., Agbayani A., Carlson J., Champe M., Chavez C., Dorsett V., Dresnek D., Farfan D., Frise E., Champe M., Gonzalez M., Guarin H., Kronmiller B., Li P., Liao G., Miranda A., Mungall C.J., Nunoo J., Pacleb J., Paragas V., Park S., Patel S., Phouanenavong S., Wan K., Yu C., Lewis S.E., Rubin G.M., Bukaryota; Metazoā; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea; Drosophilidae; Drosophila. NCBI_TaxID=7227; 477 840 436 RPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQITAHFEGR Created) Last sequence update) Last annotation update) 539 AA. Drosophila melanogaster (Fruit fly). PRT ; 01-MAY-2000 (TrEMBLrel. 13, 01-MAY-2000 (TrEMBLrel. 13, 01-OCT-2003 (TrEMBLrel. 25, Science 287:2185-2195(2000) CG10960 protein (HL01062p) PRELIMINARY; SEQUENCE FROM N.A. SEQUENCE FROM N.A. STRAIN=Berkeley; 29VU17; CG10960 Q9VU17 RESULT 13 8 qq 20 qq

9

Gaps

36;

116

114 50

176

233

4
0
ο
2004
41
σ
ö
••
60
0
8 73
Sep
Tue

us-09-886-954a-1.rspt

86 LGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVAPVYI 145 76 PIGFLINMIGRKWTMLFLVLPFILGWTMLJWAVNVSMLYASRFILGIAGGAFCVTAPMYT 135 FIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFK-DSSLASVVVGVIQVLFTAVAALIMDR 315 256 LAISMGEMPFQQVCGINAVIFYASRIFLEANTGIEAEWATILIGIMQVVATFVSTLVVDK 315 316 AGRRLLLLVLSGVVWVFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDAS--VGLAWL 373 316 LGRRILLLASGISMAISTTAIGVYFFL------QKQDAAQVVSLGWL 356 374 AVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLME 433 357 PVASLCLFIIMFSIGYGPVPWLMMGELFATDIKGFAGGSLAGTSNWLLAFVVTKTFVNLND 416 16 YVAALAAAGGAFAAGTVLGWTSPAETEIVDRGEGYDFPVDKDQFSWVGSAMTLGAACVCI 
 |||
 :||
 ||
 :||
 :||

 GEIAQXEIRGTUGSFFQLMITIGILFVYAVGAGVKIFWLSIICGILPLIFGAIFFFMPBS
 196 PTYLVSKDRSENAIKSIQWLRGKEYDYBEPELAELRETDRETKANKVNVWAALNRPVTRKA 27 FLAAFAAALGPLSFGFALGYSSPAIPSL-QRAAPPAPRLDDAAASWFGAVVTLGAAAGGV 146 SETAYPAVRGLLGSCVQLMVVVGTLLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPET PRFLLTQHRRQEAMAALRFLWGSEQGWE-------DPPIGAEQSFHLALLRQPGIYKP S.E., Gibbs R.A., Rubin G.M., Venter C.J.; to the EMBL/GenBank/DDBJ databases. 32; Length 471; 32.0%; Score 787; DB 5; Length 47. 37.4%; Pred. No. 4.4e-45; ive 91; Mismatches 167; Indels Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases. 476 459 to the EMBL/GenBank/DDBJ databases PROSITE; PS50850; MFS; 1. PROSITE; PS00217; SUGAR TRANSPORT 2; 1. SEQUENCE 471 AA; 51323 MW; 33T99A53EC0EF65E CRC64; 417 GLGIGGTFWLFAGLTVVGVIFVYFAVPETKGKSLNEIQ2ELAG 434 VLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQITAHFEG Last sequence update) Last annotation update) GO; GO:001620; C:membrane; IEA. GO; GO:001620; C:membrane; IEA. GO; GO:0005351; F:sugar porter activity; IEA. GO; GO:0008643; P:carbohydrate transport; IEA. InterPro; IPR007114; MFS. InterPro; IPR00563; Sub_transporter. InterPro; IPR00563; Sugar_transporter. Ffam; PF00083; sugar_tra, 1. Pfam; PF00083; sugar_tri, 1. PrINTs; PR00171; SUGATNNSPORT. 433 AA Created) Drosophila melanogaster (Fruit fly) PRT; FBgn0036316; CG10960. TIGRFAMS, TIGR00879; SP; 1. 01-MAY-2000 (TrEMBLrel. 13, 01-MAY-2000 (TrEMBLrel. 13, 01-OCT-2003 (TrEMBLrel. 25, EMBL; AE003540; AAN11863.1; Matches 173; Conservative PRELIMINARY; Adams M.D., Celniker Submitted (MAR-2000) Submitted (SEP-2002) Similarity [4] SEOUENCE FROM N.A. SEQUENCE FROM N.A. • CG8234 protein. FlyBase; Query Match Best Local S 136 206 257 FlyBase; Q9V610; CG8234. Q9V610 RESULT 15 ſ Q9V610 5 q  $\hat{a}$ g  $\partial$ å qq  $\mathcal{S}$ 8 g  $\mathcal{S}$ đ 8 g  $\delta$ å K BOUGNCE FROM N.A. K SOUGNCE FROM N.A. K SUBRUE FROM N.A. K MEDITURE-20196005; bubMed=10731132; Adams N.D., Celniker S.E., Holt R.A., Foshburner M., Henderson S.N., B Adams N.D., Celniker S.E., Holt R.A., Foshburner M., Henderson S.N., K Sturon G.G., Wortman J.R., Yandell M.D., Zhang Q., Chen L.X., B Fardon R.C., Noyter S. Blazei R.G., Champe M., Ffeiffer B.D., Aman K.H., Doyle C., Baxter E.G., Helt G., Nelson C.R., Gabor G.L., Abril J.F., Agbayani A., Batter H.G., Nalves Fanndoci C., Baidwin D., B Ballew R.Y., Benos P.V., Barran B.P., Bhandari D., Beobhakov S., Abril J.F., Poyle C., Busam D.A., Butler H. Cadieu E., Center A., Chandra I., Bartis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Bertis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Bertis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Bertis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Bertis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Bertis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Bertis K.C., Busam D.A., Butler H., Cadieu E., Center A., Chandra I., Aboon K.J. Doup L.E., Downes M., Dugar.Rocha S., Dunkov B.C., Dunn P., Aboon K.J. Gong F., Gorrell J.H., Gu Z., Perrador S., Dunkov B.C., Dunn P., Aboon K.J. Gong F., Gorrell J.H., Gu Z., Kennison J.A., Kethum K.A., Balai M., Kalush F., Karpen G.H., Ke Z., Kennison J.A., Kethum K.A., Alarris N.L., Harvey D., Haiman T.J., Harvit S., Nulp D., Lai Z., Liu X., Mattei B., Kodira C.D., Krast C., Marvitz S., Kulp D., Lai Z., Liu X., Mattei B., NcChreoh M.P., McPherson D., Neshreson D., Mount S.M., Noy M., Wurphy B., Mucry G., Montresi A, Mount S.M., Noy M., Wurphy B., Mucry G., Montresi A, Allazzolo M., Pittman G.S., Pan S., Pollard J., Reese M.G., Abalazzolo M., Pittman G.S., Pan S., Pollard J., Bard J., Mashen H., Suresson P., Reison K.A., Muschy K. B., Wensher F., Abalazzolo M., Pittman G.S., Pan S., Pollard J., Mount S.M., Mount S.M., Moyn M., Murphy B., Worter S., Marshern D., Nechler F., Sav SEQUENCE FROM N.A. A SEQUENCE FROM N.A. A Celniker S.E., Adams M.D., Kronmiller B., Wan K.H., Holt R.A., A Evans C.A., Goczyne J.D., Amanatides P.G., Brandon R.C., Rogers Y., Banzon J.M., Center A., Champe M., Davenport L.B., Diezz S.D., A Dodson K., Dorsett V., Doup L.E., Doyle C., Dresnek D., Farfan D., A Dodson K., Dorsett V., Doup L.E., Doyle C., Dresnek D., Farfan D., A Podson K., Dorsett V., Hoskins R.A., Hoskin D., Howland T.J., A Bodson K., Dreves D., Li P., Mattei B., Moshrefi A., A Carles S., Frise E., Galle R.F., Hoskin D., Howland T.J., A Dodson K., Dragas V., Hoskins R.A., Hoskin D., Howland T.J., A Deevam C., Jalali M., Kruse D., Li P., Mattei B., Moshrefi A., A Deevam C., Jalali M., Kruse D., Li P., Mattei B., Moshrefi A., A Detrosh T.C., Moy M., Murphy B., Nelson C., Nelson K.A., Nunoo J., A Detrosh T.C., Moy M., Murphy B., Nelson C., Nelson K.A., Nunoo J., A Detron M., Strong R., Svirskas R., Tector C., Tyler D., Williams S.M., Zavori J.S., Smith H.O., Venter J.C., Rubin G.M., Sequencing of Drosophila melanogater genome.", Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases. Misra S., Crosby M.A., Matthews B.B., Bayraktaroglu L., Campbell K., Hradecky P., Huang Y., Kaminker J.S., Prochnik S.E., Smith C.D., Tupy J.L., Bergman C., Bermert B., Carlson J.W., Cchniker S.E., Clamp M., Drysdale R., Emert D., Frise E., de Grey A., Harris N., Kronmiller B., Marshall B., Millburn G., Richter J., Russo S., Saerle S.M.J., Smith E., Suu S., Skutniak F., Whitfield E., Abhurner M., Gebart W.M., Rubin G.M., Mungall C.J., Lewis S.E., "Annotation of Drosophila melanogaster genome."; Eukaryota, Metazoa; Arthropoda, Hexapoda, Insecta, Pterygota, Neoptera, Endopterygota, Diptera, Brachycera, Muscomorpha, Ephydroidea; Drosophilidae; Drosophila. Drosophila melanogaster (Fruit fly). SEQUENCE FROM N.A. SEQUENCE FROM N.A. NCBI_TaxID=7227; 2 

5

Gaps

85 75 205

Tue Sep 28 09:09:41 2004

us-09-886-954a-1.rspt

Page 11

XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLEY, XKAINTEEDIRGLY, XKAINTEENIN, ., ს 68 AASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGR 127 Gaps .. 31; 31.1%; Score 764.5; DB 5; Length 433; 38.2%; Pred. No. 1.3e-43; tive 74; Mismatches 156; Indels 31. Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; .. Neoptera; Endopterygota; Hexapoda; Insecta; Pterygo Ephydroidea; Diosophilidae; Drosophila, NEL_TaxID=7227; PROSITE; PS50850; MFS; i. PROSITE; PS50850; MFS; i. PROSITE; PS00216; SUGAR TRANSPORT 1; 2. PROSITE; PS00217; SUGAR TRANSPORT 2; 1. SUGAT transport; Transmembrane; Transport. SEQUENCE 433 AA; 47357 MW; 63F0E13046A769DD CRC64; FlyBac; Frequencies Frequencie EMBL; AE003825; AAF58630.1; SP; 1. Conservative TIGRFAMS; TIGR00879; Similarity [1] SEQUENCE FROM N.A. STRAIN=Berkeley; Query Match Best Local Simil Matches 161; ( SOUCCESS SEARCH STRAND ST 20

Search completed: September 27, 2004, 19:29:18 Job time : 123 secs

This Page Blank (uspto)

Tue Sep 28 09:09:39 2004

**`**~

us-09-886-954a-1.rapb

Ч Page

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.	<pre>in - protein search, using sw model September 27, 2004, 19:29:30 ; Search time 147 Seconds (without alignments) 1043.425 Million cell updates/sec</pre>	US-09-886-954A-1 score: 2457 s: 1 MTPEDPEETQPLLGPPGGSACVPETKGKTLEQITAHFEGR 477	table: BLOSUM62 Gapop 10.0 , Gapext 0.5	1: 1349238 segs, 321558718 residues	umber of hits satisfying chosen parameters: 1349238	DB seq length: 0 DB seq length: 200000000	ΣΞH	<pre>Published Applications AA:* Published Applications AA:* 1: /cgn2_6/ptodata/2/pubpaa/UG07_PUBCOMB.pep:* 2: /cgn2_6/ptodata/2/pubpaa/UG06_NEW_PUB.pep:* 4: /cgn2_6/ptodata/2/pubpaa/UG06_NEW_PUB.pep:* 5: /cgn2_6/ptodata/2/pubpaa/UG06_NEW_PUB.pep:* 6: /cgn2_6/ptodata/2/pubpaa/UG08_PUBCOMB.pep:* 7: /cgn2_6/ptodata/2/pubpaa/UG08_PUBCOMB.pep:* 9: /cgn2_6/ptodata/2/pubpaa/UG08_PUBCOMB.pep:* 11: /cgn2_6/ptodata/2/pubpaa/UG09_PUBCOMB.pep:* 13: /cgn2_6/ptodata/2/pubpaa/UG09_PUBCOMB.pep:* 13: /cgn2_6/ptodata/2/pubpaa/UG09_PUBCOMB.pep:* 13: /cgn2_6/ptodata/2/pubpaa/UG09_PUBCOMB.pep:* 13: /cgn2_6/ptodata/2/pubpaa/UG09_PUBCOMB.pep:* 13: /cgn2_6/ptodata/2/pubpaa/UG00_PUBCOMB.pep:* 14: /cgn2_6/ptodata/2/pubpaa/UG00_PUBCOMB.pep:* 15: /cgn2_6/ptodata/2/pubpaa/UG00_PUBCOMB.pep:* 16: /cgn2_6/ptodata/2/pubpaa/UG00_PUBCOMB.pep:* 17: /cgn2_6/ptodata/2/pubpaa/UG00_PUBCOMB.pep:* 18: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 17: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 18: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 17: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 18: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 19: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 17: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 17: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 17: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 18: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 19: /cgn2_6/ptodata/2/pubpaa/UG00_FUBCOMB.pep:* 10: /cgn2_6/ptodata/2/pu</pre>	red. No. is the number of results predicted by chance to have a core greater than or equal to the score of the result being printed, nd is derived by analysis of the total score distribution.	\$ Query Score Match Length DB ID Description	2457100.047714US-10-168-651-1SequenceAppli245099.747712US-09-866-954-1Sequence1, Appli149160.732615US-10-168-651-1Sequence1, Appli113546.226215US-10-169-631-359Sequence2, Appli94838.650714US-10-157-031-359Sequence36, Appli94838.650716US-10-155-031-310Sequence36, Appli721629.450116US-10-055-989-110Sequence38, Appli71629.450116US-10-055-989-110Sequence5756470228.650116US-10-437-959-275264Sequence57564701.528.650115US-10-437-959-163544Sequence544pl701.528.650112US-10-437-956-163544Sequence56333, A701.528.650312US-10-425-114-59933Sequence56, Appl61525.048813US-10-51-969-366Sequence56, Appl61525.048813US-10-51-499-365Sequence17, Appl61525.048813US-10-59-44094-059-44Sequence17, Appl61525.048813US-10-941-529-44Sequence11, Appl61525.048813US-10-59-44059-44Sequence11, Appl
		score	table	hed:	number	DB DB	-processing:	e s	д D N		1         2450           2         2450           3         11351           5         948           6         948           9         716           9         716           9         712           9         712           9         702           9         702           112         668           683         683           633         615           115         615           615         615
	OM proti Run on:	Title: Perfect Sequence	Scoring	Searched	Total	Minimum Maximum	Post-	Databa		Result No.	

4 US-10-170-528-5	<pre>1 US-10-162-012-4</pre>	1 US-10-062-960B	4 US-10-144-624-4	5 US-10-162-102-46	5 US-10-038-854-1	US-09-795-693-27	13 US-10-095-139-14	1 US-10-156-239-2	4 US-10-199-485-2	5 US-10-391-399-45	5 US-10-437-963-1667	5 US-10-369-493-23371	2 US-10-425-114-63791	5 US-10-437-963-1774	2 US-10-425-114-63432	3 US-10-024-623-29	4 US-10-154-419-7	4 US-10-146-733-74	5 US-10-369-493-23536	2 US-10-282-122A-563	US-09-860-232A-7	2 US-10-425-114-63426	2 US-10-282-122A-429.	3 US-10-024-623-2	4 US-10-154-419-7	4 US-10-146-733-73	5 US-10-369-493-23552	6 US-10-437-963-1245	US-09-795-693-2	
ŝ	m	m	m	m	m	m	487	m	m	m	0	10	σ	σ	0	~	5	5	5	Q	æ	CN I	G	ø	Q.	v	œ	$\sim$	m	
							25.0									4	च	4		4	4	4	4	4	4.	4.	4.	4.	4	
	_		_		i	~	613.5	~	~	~	<u>с</u>	000	-		÷.	000	000	000	000	с. С	б С	m	Ľ.	Ŀ,	÷	Ŀ.	н. Н	ц.	<u>в</u>	
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	

Sequence 5, Appli Sequence 46, Appli Sequence 4, Appli Sequence 4, Appli Sequence 170, Appl Sequence 170, Appl Sequence 14, Appl Sequence 27, Appl Sequence 27, Appl Sequence 16774, Sequence 45, Appl Sequence 17463, Sequence 17463, Sequence 63791, A Sequence 79, Appl Sequence 73, Appl

ALIGNMENTS

APPLICANT: BAUGHN, MATIA APPLICANT: BAUGHN, MATIA APPLICANT: BUGHN, MATIA APPLICANT: BUGHN, MATIA APPLICANT: BUGHN, MATIA APPLICANT: REDDY, Roopa APPLICANT: REDDY, Roopa APPLICANT: HILLMAN, Jennifer L. APPLICANT: MILLMAN, Jennifer L. APPLICANT: AZIMZAI, Yalda APPLICANT: AZIMZAI, Salda APPLICANT: ANDHI, Ameeni R. APPLICANT: TANG, Y. TOM APPLICANT: ATAN, Farrah A. TITIE REFERENCE: PI-0005 PCT CURRENT FILING DATE: 2002-06-21 CURRENT FILING DATE: 2002-06-21 CURRENT FILING DATE: 1999-12-23; 2000-01-14; 2000-01-21; 2000-01-21; 2000-02-02; PILOR APPLICATION NUMBER: 60/172,000; 60/176,083; 60/177,332; 60/179,758 FILOR FILLNG DATE: 1999-12-23; 2000-01-14; 2000-01-21; 2000-02-02; PILOR FILLNG DATE: 1999-12-23; 2000-01-14; 2000-01-21; 2000-01-28; 2000-02-02; PILOR FILLNG DATE: 1999-12-23; 2000-01-14; 2000-01-21; 2000-02-02; PILOR FILLNG DATE: PILOFF RESULT 1 US-10-168-651-1 ; Sequence 1, Application US/10168651 ; Publication No. US20030171275A1 ; GENERAL INFORMATION: APPLICANT: INCYTE GENOMICS, INC

LENGTH: 477

TYPE: PRT ORGANISM: Homo sapiens

FEATURE: NAME/KEY: misc_feature OTHER INFORMATION: Incyte ID No. US20030171275A1 1416107CD1

Tue Sep 28 09:09:39 2004

US-10-168-651-1

ilarity 96.3%; Pred. No. 3.2e-123; Tracl 0. Cana 0	Db 181 WRWLAVLGCVEPSLMLLIMCFMPETPRFLLTQHRRQEAAPGLVRCGHGVQHECLRRLLQA 240
Matches 289; Conservative I; Mismatches IU; indels U; Gaps	QY 229 EQGW 232
QY 164 WYVGTLLARGWYLEWWLAVLGCVEPSLMLLUNCEWPELPRELLURGEWARALK 223 1 MVVGTLLAYLAGWYLEWRMLAVLGCVEPSLMLLLNCEMPETPRELLITOHRKGEAMAALK 223 DD 1 MVVGTLLAYLAGWYLEWRMLAVLGCVEPSLMLLLNCEMPETPRELLITOHRRGEAMAALK 60	Db 241 DPGW 244
QY 224 FLWGSBQGWEDPPIGAEQSFHLALLRQPGIYKPFIGVSLMAPQQLSGVNAVMFYAETIF 283 	
284	; Publication No. US20030108990A1 ; GENERAL INFORMATION: ; APPLICATT: Baranova, A. V.
	APPLICANT: Kozlov, A. P. APPLICANT: Kozlov, A. P. APPLICANT: Krukovskaya, L. L. APPLICANT: Krukovskaya, L. L.
404 HVKGVATGICVLTNMLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETK 404 HVKGVATGICVLTNMLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETK 241 HVKGVATGYCVLXNNIMXFFIXTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLVCALKLK	/10/157,031 30
SULT 4	; SOFTWARE: Patentin version 3.1 ; SEQ ID NO 359 ; LENGTH: 507
US-10-169-395-9 ; Sequence 9, Application US/10169395 ; Publication No. US20040034192A1	; TYPE: PRT ; ORGANISM: Homo sapiens US-10-157-031-359
	Query Match 38.6%; Score 948; DB 14; Length 507; Best Local Similarity 42.7%; Pred. No. 5.5e-75; Matches 216; Conservative 80; Mismatches 166; Indels 44; Gaps 11;
TITLE OF INVENTION: THESE PROTEINS FILE REFERENCE: 01997.015100.US CURRENT APPLICATION NUMBER: US/10/1 CURDENN PITING DATE: 02002-11-29	0PI 5PI EPI
PRIORE APPLICATION NUMBER: 2005-585 PRIOR FILING DATE: 2000-01-06 PRIOR FILING DATE: 2000-01-06 PRIOR FILING DATE: 2000-01-06	51 53 63
PRIOR APPLICATION NUMBER: JP 2000-2299 PRIOR FILING DATE: 2000-01-11 PRIOR APPLICATION NUMBER: JP 2000-26862	QY       111       FAVITAADDVMMLLGGRLLFGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGIL       170         QY       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1
PRIOR APPLICATION NUMBER: JP 2000-58367 PRIOR FILING DATE: 2000-03-03 PRIOR APPLICATION NUMBER: PCT/JP00/09359	171 183
NUMBER SEQ ID LENGT	QY 231 GWEDPPIGAEQSFHL-ALLRQPGIYKPFIGVSLMAFQQLSGVNAVMFYAETIF 283 
mo sapiens	284
Query Match 46.2%; Score 1135; DB 12; Length 262; Best Local Similarity 91.4%; Pred. No. 6.9e-92; Matches 223; Conservative 2; Mismatches 7; Indels 12; Gaps 1;	
QY     1     MTPEDPEETQPLGPPGGSAPRGRVFLAAFAALGPLSFGFALGYSSPAIPSLQRAAPP     60       0h     1     MTPEDPERTOPLLGPPGGSAPRGRVFLAAFAALGPLSFGFALGYSSPAIPSLQRAAPP     60	a a pagyltlvpllatmlfimg vtkefsslmevlrpygafwla
61 APRIDDAASWEGAVYTLGAAGGYLGGWLVDPAGRKLSLLLCSVPFVAGFAV1TAAQDV	417
61 APRLIDIANASWEGAVYTIGAAAGGVLGGWLVDRAGRKUS	QY 453 LFTLFCVPETKGKTLEQITAHFE-GR 477 3 1                                  5 55 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
QY 121 WMLDGGKLDTGLGCGVASLYKYLIEBLAYPAYGLGCCQUWYVVCLDDATDAGWYDB 100 	9 L'III
QY 181 WRWLAVLGCVPPSLMLLLMCFMPETPRFLLTQHRRQEAMALRFLWGS 228	useuurs US-10-755-889-110 ; Sequence 110, Application US/10755889

Page 3

us-09-886-954a-1.rapb

Tue Sep 28 09:09:39 2004

۰**.** 

Ξ

ā

÷ ,

Tue Sep 28 09:09:39 2004

us-09-886-954a-1.rapb

<pre>cURRENT APPLICATION NUMBER: US/10/051,909 cURRENT FILING DATE: 2002-01-17 FPHIOR APPLICATION NUMBER: 60/083,044 FPHIOR FILING DATE: 2002-01-17 FPHIOR FILING DATE: 40/1998 NUMBER OF SEQ ID NOS: 38 SOFTWARE: Microsoft Office 97 SEQ ID NO 38 LENGTH: 501 FTYPE: PRT ORGANISM: OTYZA SALIVA US-10-051-909-38</pre>	Query Match 29.4%; Score 723; DB 13; Length 501; Best Local Similarity 35.6%; Pred. No. 4.2e-55; Matches 173; Conservative 89; Mismatches 172; Indels 52; Gaps 8;	Qy       17       GGSAPRGRRVFLAAFAAALGPLSFGFALGYSSPATPSLQRAAPPAP       62         Db       17       17       17       17         Db       39       GGGGGMGSRLGSSAYSLRDSSVSAVLCTLIVALGPIOFGFTCGFSSPTQDAIISDL       94	AVITAAQDVWM 1  :  :  LAISFAKDSSF 1	QY 123 LLGGRLLTGLACGVASLVAPVYISBIAYPAVRGLLGSCVQLMVVUGILLAYLAGMVLEWR 182 		MFYAETIFEEAKF 28 :    :  :   LFYAASIFKAAGL 32	3 <b>4</b> 38	QY     349 NSSHVAISAPVSAQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGV     408       DD     389 NGSHLYSV-MSMLSLVGLVAFVISFSLGLGAIPWIIMSEIFPLHVIKGL     435	46		RESULT 8 US-10-424-599-275264	; Sequence 275264, Application US/10424599 ; Publication No. US2040031072A1 ; GENERAL INFORMATION: ; APPLICANT: La Rosa Thomas J	APPLICANT: Zhou Yihua APPLICANT: Zhou Yihua APPLICANT: Zhou Yihua APPLICANT: Cao Yongwei TITLE OF INVENTION: Soy Nucleic Acid Molecules and other Molecules Associated With TITLE OF INVENTION NUMBER: US/10/424,599 CURRENT FILIOS NUMBER: US/10/424,599 NUMBER OF SEQ ID NOS: 285684 SEQ ID NO 275564 LENGTH: 484 TYPE: PRT ORGANISM: Glycine max FEATURE: ORGANISM: Glycine max
<pre>Publication No. US20040171823A1 GENERAL INFORMATION: APPLICANT: Bristol-Myers Squibb Company TITLE OF INVENTION: POLYNOCLEOTIDES AND POLYPEPTIDES ASSOCIATED WITH THE NF-kB TITLE OF INVENTION: PATHMAY TITLE OF INVENTION: PATHMAY FILE REFERENCE: D0284 NP CURRENT APPLICATION NUMBER: US/10/755,889 CURRENT APPLICATION NUMBER: US. 60/440,068 FRIOR APPLICATION NUMBER: US. 60/440,068 FRIOR APPLICATION NUMBER: US. 60/440,068 FRIOR RILING DATE: 2003-01-14 FRIOR FILING DATE: 2003-01-14 FRIOR FILING DATE: 2003-01-12</pre>	03	; TYPB: PRT ; ORCANISM: Homo sapiens US-10-755-889-110	Query Match 38.6%; Score 948; DB 16; Length 507; Best Local Similarity 42.7%; Pred. No. 5.5e-75; Matches 216; Conservative 80; Mismatches 166; Indels 44; Gaps 11;	QY 10 QPLLGPPGGSAPRGRRVFLAAFAAALGPLSFGFALGYSSFA 50 :	QY       51       IPSLQRAAPPAPRLDDAAASWFGAVYTLGAAAGGYLGGWLVDRAGRKLSLLLCSVPFVAG       110         0       1       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :	QY       111       FAVITAADDVWMLLGGRLLFGLACGVASLVAPVYISEIAYPAVRCLLGSCV0LMVVVGIL       170         :1:::::::::::::::::::::::::::::::::::	QY 171 LAYLAGWVLEWRMLAVLGCVPPSLMLLLMCFMPETPRFLLTQHERQEAMAALRFLMGSEQ 230 	QY 231 GWEDPPIGAEQSFHLALLRQPGIYKPFIIGVSLMAFQOLSGYNAVMFYAETIF 283 Db 243 DVHWEFEQIQDNVRRQSSRVSWAEARAPHVCRPTTVALLMRLLQOLTGITPILVYLQSIF 302	QY 284 EEAKFKDSSLASVVVGVIQVLFTAVAALIMDRAGRRILLVLSGVVMVFSTSAFGAY 339 :	QY 340 FKLTQGGPGNSSHVAISAPVSAQPVDASVG-LAWLAVGSMCLFIAGFAVGWGPI 392      : :         : :	QY       393       PWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSV       452         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	QY     453 LFTLFCVPETKGKTLEQITAHFE-GR 477       bb     477 VFTGCCVPETKGRSLEQIESFFRMGR 502	RESULT 7 UG-10-051-909-38 5 Sequence 38, Application US/10051909 5 Publication NO: U52020199217A1 6 GENERAL INFORMATION: 7 APPLICANT: Allen, Steve 7 APPLICANT: Helentjaris, Tim 7 APPLICANT: Hilz, Bill 7 APPLICANT: Tingey, Scott 7 APPLICANT: Tingey, Scott 7 APPLICANT: Tingey, Scott 7 TITLE OF INVENTION: Plant Sugar Transport Proteins 7 FILB REFERENCE: BB1163 US CIP

-

^

us-09-886-954a-1.rapb

Page 5

-----

-----

Db 63 FLCTLIVALGPIQFGFTGGFSSPTQDAIIRDLDLTLSEFSVFGSLSNVGAMVGAIA	GGWLVDRAGRKLSLLLCSVPFVAGPAVITAAQDVWMLLGGRLLTGLAC ::      : :: :   :  :          SGQMAEYIGRKGSLMIAAIPNIGWLAISPAKDSSFLYMGRLLEGFGV EIAXPAVRGLLGSCVQLMVVVGTLLAYLAGWVLBWRWLAVLGCVPPSI   : :                     :           :  :	PVYI     145     207     RFLLTOHRRQEAMAALRFLWGSEQGWEDPPIGAECSFHLALLRQPG       PVYI     145     14     1       111     1     1     1       111     1     1     1       111     1     1     1       111     1     1     1       111     1     1     1       111     1     1     1       111     1     1     1       111     1     1     1       111     1     1     1	313 354	313 QY 373 313 Db 400 337 Db	DD 459 EVENTGER MASAFILES VELLES VELLES VELLES VELLES VELLES VELLES VELLES VELLES VELLES VELLE VELLES VELLE	SSLME 433         RESULT 10           US-10-422-114-63431         US-10-422-114-63431           i:         bguence 63431, Application US/10425114	; PUBLICATION NO. US2004003488BAI ; GENERAL INFORMATION: ; APPLICANT: Liu, Jingdong ; APPLICANT: Zibou, Yihua , ADPLICANT: Arvalic Arvid K	APPLICANT: Screen, Steven E APPLICANT: Tabaska, Jack E APPLICANT: Tabaska, Jack E APPLICANT: Cao, Yongwek TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated TITLE OF INVENTION: Plants and Uses Thereof for Plant Improvement FILE REFERENCE: A2, 24, 21, 63, 31, 91	CURRENT APPLICA CURRENT FILING 1 NUMBER OF SEQ 11 SEQ ID NO 63431	; LENOTH: 523 ; TYPE: PRT ; ORGANISM: Oryza sativa ; FRANTIRE:	S-1	Query Match 28.6%; Score 702; DB 12; Length 523; Best Local Similarity 35.9%; Pred. No. 3.2e-53; Matches 166; Conservative 80; Mismatches 178; Indels 38;	27 FLAAFAALGPLSFGFALGYSSPAIPSLQRAAPPAF        :      :    ::	85	DY B7 GGWLVDRAGRKLISLLCSVPFVAGFAVITAADDVWMLLGGRLLTGLACGVASLVAPYIS 1. : : : : : : : : : : : : : : : : : : :	Qy     147 EIAYPAVRGLIGSCVQLMVVVGILLAYLAGWVLEWRMLAVLGCVPBSLMLLLMCFWPETP       Qy     147 EIAYPAVRGLIGSCVQLMVVVGILLAYLAGWVLEWRMLAVLGCVPBSLMLLLMCFWPETP       Gaps     6;       ph     201       ph     201
; OTHER INFORMATION: Clone ID: PAT_MRT3847_90584C.1.pep US-10-424-599-775264	<pre>Dustry Match Dustry Match Best Local Similarity 35.6%; Pred. No. 1.7e-54; Matches 164; Conservative 89; Mismatches 174; Indels 34; G 2 vFLAAFAAALGPLSFGFALGYSSPA1PSLQPRAPPAPLDDAAASWFGAVVTLGAA 26 vFLAAFAAALGPLSFGFALGYSSPA1PSLQPRAPPAPLDDAAASWFGAVVTLGAA 45 vLFCVLIVhLGPIQPGFTCGYSSPTQCAIVRDLNLSISEFFGSLSNVGAN</pre>	QY     86 LGGMLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVAI             :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           <td>Db     161     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111<td>254 YKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGVIQVLFTAV :   :: :   :      :  ::  :            </td><td>QY     314 DRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGI       01     1:: 1  1::        1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1 :1      1       1::1 1 :1 :1 :1 :1 :1 :1        1::1 1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 </td><td>QY     374     AVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFS       Db     :     :     :       132     VIGFSLGLGPIPWLIMSEILPVNIKGLAGSIATMGNWLISWGITMTAN</td><td>QY 434 VLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLBQITAHF 474   : :   :  ::  Db 444 -wssGGTFTIYTVVAAFTIAFIAMWVPETKGRTLEEIQFSF 483</td><td>RESULT 9 US-10-437-963-163544 ; Sequence 163544, Application US/10437963 ; Publication No. US20040123343A1</td><td>APPLICANT: La Rosa, Thomas J. APPLICANT: Kovalic, David K. APPLICANT: Zhou, Yihua APPLICANT: Cao, Yihua</td><td>APPLICANT: Wu, Wei APPLICANT: Boukharov, Andrey A. APPLICANT: Larbazuk, Brad</td><td>TITLE OF INVENTION: Rice Nucleic Acid Molecules and Other Molecules TITLE OF INVENTION: Plants and Uses Thereof for Plant Improvement</td><td>; FILE KEFERENCE: 38-21(53221)B ; CURRENT APPLICATION NUMBER: US/10/437,963 ; NUMBER OF SEO ID NOS: 2003-05-14</td><td>SEQ ID NO 163544 LENGTH: 501 TYPE: PRT</td><td>ISM: Oryza sativa RE: RE: Anonymical Anono The Nam Annuello Anono A ano</td><td>R INFORMATION: Clone ID: PAT_MRT4530_62530C.1.pep 7-963-163544</td><td>Query Match 28.0%; Score 702; DB 16; Length 501; Best Local Similarity 35.9%; Pred. No. 3e-53; Matches 166; Conservative 80; Mismatches 178; Indels 38; G</td></td>	Db     161     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111     111 <td>254 YKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGVIQVLFTAV :   :: :   :      :  ::  :            </td> <td>QY     314 DRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGI       01     1:: 1  1::        1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1 :1      1       1::1 1 :1 :1 :1 :1 :1 :1        1::1 1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 </td> <td>QY     374     AVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFS       Db     :     :     :       132     VIGFSLGLGPIPWLIMSEILPVNIKGLAGSIATMGNWLISWGITMTAN</td> <td>QY 434 VLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLBQITAHF 474   : :   :  ::  Db 444 -wssGGTFTIYTVVAAFTIAFIAMWVPETKGRTLEEIQFSF 483</td> <td>RESULT 9 US-10-437-963-163544 ; Sequence 163544, Application US/10437963 ; Publication No. US20040123343A1</td> <td>APPLICANT: La Rosa, Thomas J. APPLICANT: Kovalic, David K. APPLICANT: Zhou, Yihua APPLICANT: Cao, Yihua</td> <td>APPLICANT: Wu, Wei APPLICANT: Boukharov, Andrey A. APPLICANT: Larbazuk, Brad</td> <td>TITLE OF INVENTION: Rice Nucleic Acid Molecules and Other Molecules TITLE OF INVENTION: Plants and Uses Thereof for Plant Improvement</td> <td>; FILE KEFERENCE: 38-21(53221)B ; CURRENT APPLICATION NUMBER: US/10/437,963 ; NUMBER OF SEO ID NOS: 2003-05-14</td> <td>SEQ ID NO 163544 LENGTH: 501 TYPE: PRT</td> <td>ISM: Oryza sativa RE: RE: Anonymical Anono The Nam Annuello Anono A ano</td> <td>R INFORMATION: Clone ID: PAT_MRT4530_62530C.1.pep 7-963-163544</td> <td>Query Match 28.0%; Score 702; DB 16; Length 501; Best Local Similarity 35.9%; Pred. No. 3e-53; Matches 166; Conservative 80; Mismatches 178; Indels 38; G</td>	254 YKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGVIQVLFTAV :   :: :   :      :  ::  :	QY     314 DRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGI       01     1:: 1  1::        1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1:: 1  1::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::      1       1::1 1 ::1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1      1       1::1 1 :1 :1 :1 :1      1       1::1 1 :1 :1 :1 :1 :1 :1        1::1 1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1 :1	QY     374     AVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFS       Db     :     :     :       132     VIGFSLGLGPIPWLIMSEILPVNIKGLAGSIATMGNWLISWGITMTAN	QY 434 VLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLBQITAHF 474   : :   :  ::  Db 444 -wssGGTFTIYTVVAAFTIAFIAMWVPETKGRTLEEIQFSF 483	RESULT 9 US-10-437-963-163544 ; Sequence 163544, Application US/10437963 ; Publication No. US20040123343A1	APPLICANT: La Rosa, Thomas J. APPLICANT: Kovalic, David K. APPLICANT: Zhou, Yihua APPLICANT: Cao, Yihua	APPLICANT: Wu, Wei APPLICANT: Boukharov, Andrey A. APPLICANT: Larbazuk, Brad	TITLE OF INVENTION: Rice Nucleic Acid Molecules and Other Molecules TITLE OF INVENTION: Plants and Uses Thereof for Plant Improvement	; FILE KEFERENCE: 38-21(53221)B ; CURRENT APPLICATION NUMBER: US/10/437,963 ; NUMBER OF SEO ID NOS: 2003-05-14	SEQ ID NO 163544 LENGTH: 501 TYPE: PRT	ISM: Oryza sativa RE: RE: Anonymical Anono The Nam Annuello Anono A ano	R INFORMATION: Clone ID: PAT_MRT4530_62530C.1.pep 7-963-163544	Query Match 28.0%; Score 702; DB 16; Length 501; Best Local Similarity 35.9%; Pred. No. 3e-53; Matches 166; Conservative 80; Mismatches 178; Indels 38; G

4
2004
ò
Ň
•••
ማ
e
••
δ
0
••
σ
ö
-
œ
ñ
•••
Sep
Ø
SU
Tue
Þ.
ы

<pre>QY 329 WVFSTSAFGANFKLFOGGEONSEHVLAEAPVSAQPUASVGLAMLAVGSMCLFIAGFAVG 389 WVTILIVUSVSFFVLAGGSDINSEHVLASAPVSAQPUASVGLAMLAVGSMCLFIAGFAVG 389 WVTILIVUSVSFFVKUNIAAGSHLVXVSV</pre>	<pre>36SAPRGRRVFLAAFAAALGPLSFGFALGYSFAIPSLORAAPPAPRLDDAAS 70 [] [: ] ] .: ] ] .: ] .: ] .: ] .: ] .:</pre>
Bb       261 RMLARGENGERESLOVLAGEBDISAEVNDTRAVASANKETTREGLAGKK 315         CY       253 ITKFFITGVELMAFQOLGENMALMFYAETTEEAKFKDSSLAGVVVGTQULFTAVAALI 312         Db       316 YRTPLIGLAUVLOGESTMGTIRFAGEIRAGEIRSLAFTAVGATQULATCVATTEL 375         CY       313 NERRELLIULISSAGTIRFAGEIRAGEIRSLAFTACALQULATCVATTEL 375         CY       313 NERRELLIULISSAGTIRFAGEIRAGEIRSLAFTARCALQULATCVATTEL 375         CY       313 NERRELLIULISSAGTIRFAGEIRAGEIRSLAFTARCALAQULATCVATTEL 375         CY       313 INVERGEIRAGUESTLAFTAGEVVVFFESAGEIRAGEIRAGEIRAGEIRAGEIRAGUERACALAQULATCVATTEL 375         Db       313 INVERGEIRAGUESTLAFTAGEVVVFFESAGEIRAGEIRAGUERACALACULATCVATTEL 375         CY       373 ILAVGSACEFLAGEVVVFFESAGEIRAGEIRAGUERSDEIRAGUERACALACULATCVATTEL 375         CY       373 ILAVGSACEFLAGEVVVFFESLILANAVVFFL-KESIGGERATIANMATERGITHATANLERGITART         CY       373 ILAVGSACEFLAGERACADERTICATIONTART         CY       373 ILAVGSACEFLAGERVERSLESLILANGEIREILONATION         CY       373 ILAVGSACEFLAGERACADERTISCITART         CY       373 ILAVGSACEFLAGERACADERTISCITART         CY       373 ILAVGSACEFLAGEIRAGUESTAGEIRAGERTIANALTFRETERGEIRAGEIRAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGEIRAGUERAGUERAGUERAGUERAGUERAGUERAGUERAGUE	Query Match28.6%; Score 701.5; DB 12; Length 509; Best Local Similarity24.2%; pred. No. 3.4e-53; Matches 113; Conservative 86; Mismatches 182; Indels 65; Gaps 8; OY 10 QPLLGPRGSAPRGRRVFLAAFAALGPLSFGF 42 27 KPLINTGSWYEMPPAGGWGSSOSMERLGSSAFSLRDVAISATLCTLIVALGPLOFOF 86 OY 43 ALGYSSPAIPSLQRAAPPAPRLDDAASWFGAVVTLGAAGGUGGWLVDRGFKGF 42 87 TCGYSSPTODALIADLGLSLSEFSLFGSLSNVGAMCGAISSGQLAEVLGARGKLLL 102 

.^

•

٩,

us-09-886-954a-1.rapb

Db       45       VLLSTLVAVCGSFTFGTCVGYSAPTQAAIRADIAUSLAEFSMFGSLVTIGAMLGAI       100         Qy       86       LGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLJTGLAGGVASLVAPVYI       145	Db       101       TSGRITUPTGRKGAMRISTGFCITGWIAVFFSKGSYSLDFGRFFTGYGIGVISYVPVY1       160         Qy       146       SEIAYPAVELGSCVQLMVVVGILLAYLAGWVLBWRWLAVLGCVPPSLMLLLMCFMPET       205         Qy       161       seliaptor       seliaptor       seliaptor       205         Db       161       all seliaptor       seliaptor       seliaptor       205         Qy       206       PRFLLTOHRRQEAMALRFLWGSSUSFLIGSVINWRELALAGLVPCICLLVGLCFIPES       220         Qy       206       PRFLLTOHRRQEAMALRFLWGSEQGWEDPP       seliaptor       256         Db       221       PRMLAVGREKEFQLALSRLRGKDADISDEAABILDYTETLDSLFKTKLLDLFQSCHYRY       280         Qy       223       PRILAVGREKEFQLALSRLRGKDADISDEAABILDYTETLDSLFKTKLLDLFQSKTYHS       280         Qy       257       FIIGVILA       seliaptor       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11	Db       281 VIGVGLMACQGSVGINGGFYTAEIFVAAGLSSGKAGTIAYACIQIPFTLIGAILMDKS 340         Qy       317 GRRLLLVLS-GVWVFSTSAFGAYFKLTQGGPONSHVAISAPVSAQPVDASVGLAM 372         Db       341 GRRLLNLS-GVWVFSTSAFGAYFKLTQGGPONSHVAISAPVSAQPVDASVGLAM 372         Qy       373 -LAVGSMCLFIAGFAVGMCPFPMLMSEIFPLHVKGVAGGICVLTNMLMAFLVTKEFSSL 431         Qy       373 -LAVGSMCLFIAGFAVGMCPFPMLMSEIFPLHVKGVAGGICVLTNMLMAFLVTKEFSSL 431         Db       373 -LAVGSMCLFIAGFAVGMCPFPMLMSEIFPLHVKGVAGGICVLTNMLMAFLVTKEFSSL 431         Qy       373 -LAVGSMCLFIAGFAVGMCPFPMLMSEIFPLHVKGVAGGICVLTNMLMAFLVTKEFSSL 431         Qy       373 -LAVGSMCLFIAGFAVGMCPFPMLMSEIFPLHVKGVAGGICVLTNMLMAFLVTKEFSSL 431         Qy       373 -LAVGSMCLFIAGFAVGMCPFFMCMMSEIFPLHVKGVAGGICVLTNMLMAFLVTKEFSSL 431         Qy       373 -LAVGSMCLFIAGFAVGMCPFWMLMSEIFPLHVKGTAGGICVLTNMLMAFLVTKEFSSL 431         Db       378 ILLAFAGVLIYIARFSIGLGSVPMVIMSEIFPHHKGTAGSLVVLVAMLGAMVVSYTFNFL 437         Qy       432 MEVLRPYGAFMLASAFCIFSVLFTLFVVELVFETEQTA 472         Db       438 MSMSSP-GTLFLYAGCSLLTLEVVELVEETEAAAAAAAA	RESULT 14 UC-09-794-922-11 5 Sequence 11, Application US/09794822 5 Sequence 11, Application US/09794822 5 Publication No. US20030017585A1 6 EENERAL INFORMATION: A PULICANT: CULGEN COFFORTION 7 TITLE OF INVENTION: NOVEL Sodium/Solute Symporter-Like Protein and Nucleic 7 TITLE OF INVENTION: Acids Encoding Same 7 TITLE OF INVENTION: Acids Encoding Same 7 TITLE OF INVENTION: Acids Encoding Same 7 TITLE OF INVENTION: NUMBER: US/09/794, 822 7 CURRENT FILING DATE: 2001-02-26 7 CURRENT FILING DATE: 2001-02-26 7 CURRENT FILING DATE: 2000-02-26 7 CURRENT FILING DATE: 2000-03-02 7 CURRENT FILING FILI	
QY 417 NWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKG 464     :  :  ::        Db 481 NWLTSFAITMT-TNLMLTWSVGGTFLSYMVVSAFTIVFVVLWVPETKG 527	4-725 25, Appli n No. US2 FORMATION FORMATION Edemet : Edgertc Adams, : Ruff, : Agarwa	<pre>BanL, James A. BanU, G. Bell, Erin Bell, Erin Bell, Raghav Deng, Molian Dong, Jinzhuo Dong, Jinzhuo Dong, Jinzhuo Buff, Srephen M. Hinchey, Brenda S. Hung, Shihshieh Johnson, G. Richar Jung, Vincent A. Kretzmer, Keith A</pre>		APPLICANT:ZIAO, YajuanAPPLICANT:ZADO, YajuanTITLE OF INVENTION: Gene Sequences and Uses Thereof in PlantsFILLS REFERENCE: 39-15(52796)BCURRENT APPLICATION NUMBER: US/10/310,154FILLS REFERENCE: 39-15(52796)BCURRENT FILING DATE: 2002-12-04FRICR FILING DATE: 2001-12-04NUMBER OF SEQ ID NOS: 736FRICR FILING DATE: 2001-12-04NUMBER OF SEQ ID NOS: 736SEQ ID NO 225LENGTH: 481CORANISM: Glycine maxUS-10-310-154-725OUET WALCHSEQ ID NO 225OUET VALUESEQ ID NO 225CORANISM: Glycine maxUS-10-310-154-725CORENTISM: Glycine maxUS-10-310-154-725OUET WALCHSEQ ID NO 225OUET VALUESEQ ID NO 225OUET VALUESEQ ID NO 225OUET VALUESEQ ID NO 225OUET VALUESEQ ID NO 225CORANISM: GLYCINE ANDSEQ ID NO 225DATE: COLIESEQ ID NO 225OUET VALUESEQ ID NO 225OUET VALUESEQ ID NO 225CORANISM: GLYCINESEQ ID NO 225CORANISM: GLYCINESECORE SEQ ID NOSSECORE SEQ ID NOS <t< td=""></t<>

238 279	235 335 358	394 405	449 457		18, 11, 11, 11, 11, 11, 11, 11, 12, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
9 ALNSWGWRIPLGLQLVPALLLLIGLLFLPESPRWLVEKGKLEEAREVLAKLRGVEDVDQE 4 DPPIGAEQSFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYA 9 IOEIXARIARVSFFKGYXSWGFLPGCPFPDCVFDD11MFVACACACACACACACACACACACACACACACACACACAC	0       ETIFEEAKFKDSSLASVVUGVIQVLFTAVAAL-IMDRAGRRLLLVLSGVVMVFGTS         0       ETIFEEAKFKDSSLASVVUGVIQVLFTAVAAL-IMDRAGRRLLLVLSGVVWVFGTS         0       ETIFESAKFKDSSLASVVUGVIQVLFTAVAAL-IMDRAGRRLLLLVLSGVVMVFGTS         0       ETIFESAKFKDSSLASVVUGVIQVLFTAVAAL-IMDRAGRRLLLLVLSGVVMVFGTS         0       ETIFESAKFKD SSLASVVUGVIQVLFTAVAAL-IMDRAGRRLLLLVLSGVVMVFGTS         0       ETIFESAKFKD SSLASVVUGVIQVLFTAVALLFLVDRAGRRLLLLLLSGAGMAICFL         0       PTIFKSVGVSDSVASLLVTIIVGVVNFVFTFVALLFLVDRFGRRPLLLLLGAAGMAICFL		<pre>5 LLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPY-GAFWLASAFCI ::: :     :   :               :   : 6 VILSELFPTKVRSKALALATAANWLANFIIGFLFPYITGAIGLALGGVVFLV</pre>	0 FSULFTLFUPETKGKTLEQITAHF 474  : :	<pre>4 4 4 4 4 4 4 4 4 6 6 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>
17 23. 23	28	336 359	395 406	450 458	
40 V 40	Db Qy	Db Db	VQ dq	oy B	RESULT US-10- BENE APP APP APP APP APP APP APP APP APP AP

дD	299 1	299 PTIFKSVGVSDSVASLLVTIIVGVVNFVFTFVALIFLVDRFGRRPLLLLGAAGMAICFLI 358	Ø
oy	336 1	336 FGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGLAML-AVGSMCLFIAGFAVGMGPIPW 394	4
дa	359 I	359 LGASIGVALLLLNKFKDPSSKAAGIVAIVFILLFIAFFALGMGFIPW 405	ъ
οy	395 I	395 LLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCI 449	ማ
Дþ	406	VILSELFPTKVRSKALALATAANWLANFIIGFLFPYITGAIGLAGGYVFLV 457	7
QY	450 F	450 FSVLFTLFCVPBTKGKTLEQITAHF 474	
βb	458	:	

Search completed: September 27, 2004, 19:41:42 Job time : 149 secs

2004
09:09:39
p 28
Tue Sep
ŕ

۰,

0044 ,0,, ,	401	Sequence 10, Appl Sequence 44, Appl Sequence 26, Appl	Sequence 28, Appl Sequence 28, Appl Sequence 3, Appli Sequence 3, Appli	122	1 2				TRANSPORTER FAMILY MEMBERS																
0.1 863 9.9 521 9.9 534 9.9 534	488.5 19.9 534 4 486.5 19.8 510 4 485.5 19.8 488 2	465.5 19.8 488 4 465.5 19.8 488 4 465.5 18.9 532 4	454 18.5 383 3 454 18.5 383 2 454 18.5 383 3 454 18.5 383 3	444 18.1 510 4 444 18.1 510 4 437 17.8 511 4	F FOC F'/T C'075	ALIGNMENTS	REGULT 1	u-1.02-012-44 quence 46, Application US/10162012 tent No. 6682597 NERAL INFORMATION:	IL AND	RIOR FILING DATE: 2000-06-06 RIOR APPLICATION NUMBER: US 09/875,321 RIOR FILING DATE: 2001-06-06 RIOR APPLICATION NUMBER: PCT/US01/18340	PRIOR FILING DATE: 2001-06-06 PRIOR APPLICATION NUMBER: US 60/209,257 PRIOR FILING DATE: 2000-06-05 PRIOR APPLICATION NUMBER: US 09/875,423 PRIOR FILING DATE: 2001-06-05	RIOR APPLICATION NUMBER: PCT/US01/18398	RICK APPLICATION NUMBER: US 60/209,238 RICK FILING DATE: 2000-06-05	RIOR APPLICATION NUMBER: US 09/875,363 RIOR FILING DATE: 2001-06-05	RIOR APPLICATION NUMBER: PCT/US01/18247 RIOR FILING DATE: 2001-06-05	RIOR APPLICATION NUMBER: US 60/227,068 RIOR FILING DATE: 2000-08-22	RIOR APPLICATION NUMBER: US 09/928,530 RIOR FILING DATE: 2001-08-13	RIOR APPLICATION NUMBER: PCT/US01/25475 RIOR FILING DATE: 2001-08-15	RIOR APPLICATION NUMBER: US 60/226,770 RIOR FILING DATE: 2000-08-21		APPLICATION NUMBER: PCT FILING DATE: 2001-08-21		PRIOR APPLICATION NUMBER: US 10/109,029 PRIOR FILING DATE: 2002-03-28		FILING DATE: 2001-05-11
							RESUI							G G		<u> </u>							ια. 	<u> </u>	Ed
ri Ti		me 34 Seconds nments) on cell updates/sec	.CVPETKGKTLEQITAHFEGR 477			389414			* *	<pre>y chance to have a le result being printed, distribution.</pre>	Description		Sequence 1902, A Sequence 11902, A Sequence 11933, A	ທີ່ທີ່	ທີ່ຕັ	22	2 1	ώυ	50	00	ЯA	25	22	Sequence 20, Appl Sequence 3, Appli Sequence 3, Appli	30
GenCore version 5.1.6 (c) 1993 - 2004 Compugen Ltd	ng sw model	2004, 19:24:47 ; Search time 34 S. (without alignments) 724.282 Million cell		Gapext 0.5	51625971 residues	chosen parameters:	Ö	0% 100% 45 summaries	<pre>ssued_Patents_AA:*     /cgn2_6/ptodata/2/iaa/5A_COMB.pep:*     /cgn2_6/ptodata/2/iaa/5B_COMB.pep:*     /cgn2_6/ptodata/2/iaa/6A_COMB.pep:*     /cgn2_6/ptodata/2/iaa/6B_COMB.pep:*     /cgn2_6/ptodata/2/iaa/PcTUS_COMB.pep:*     /cgn2_6/ptodata/2/iaa/perts</pre>	results predicted by ch l to the score of the re of the total score dist	SUMMARIES		US-09-489-039A-11902 US-09-489-039A-11902 US-09-489-039A-11933	US-09-031-392-5 US-09-299-549-5	US-09-610-417-5 US-09-031-392-10	US-09-299-549-10 US-09-610-417-10	US-09-679-686B-23 US-09-679-686B-18	US-09-031-392-6 US-09-299-549-6	US-09-610-417-6 US-09-679-686B-22	US-09-679-686B-2 US-09-679-686B-24 US-09-679-686B-24	US-09-679-686B-16 US-08-928-692-13	9-339-9 3-928-6	US-09-339-972-12 US-09-489-039A-11731	US-09-291-922-20 US-08-355-844-3 PCT-US95-16126-3	US-09-291-922-30
Gen Copyright (c)	ein search, using	September 27, 20	US-09-886-954A-1 2457 1 MTPEDPEETQPLLGPPGGSA	BLOSUM62 Gapop 10.0 , Gap	389414 segs, 516	hits satisfying	length: 0 length: 200000000	Minimum Match 0 Maximum Match 1 Listing first 4	<pre>Issued_Patents     /cgn2_6/ptod     /cgn2_6/ptod     /cgn2_6/ptod     /cgn2_6/ptod     /cgn2_6/ptod     /cgn2_6/ptod     /cgn2_6/ptod     /cgn2_6/ptod </pre>	No. is the number of 1 greater than or equal derived by analysis of	% Query Match Length DB		6 514 5 476	4 494 494	4 494 1 493	1 493 1 493	3 518 1 517	8 509 509	8 509 514	6 502 4 519	0 518 0 584	0 584 9 524	9 524 7 501	20.6 513 4 20.3 492 2 20.3 492 5	2 549
	otein - protein	on: Se	score:	table:		number of	DB seq DB seq	Post-processing: N	0 	Pred. No. i score great and is deriv	Score		605 578.5	575.5 575.5	575.5 568	568 568	548.5 542.5	536 536	536 535	529.5 526.5	516.5 516	516 513	513 507.5	24 506.5 25 498.5 26 498.5	497
	OM prote	Run oi	Title: Perfect Sequence	Scoring	Searched	Total	Minimum Maximum	Post-1	Databa		Result No.				-	1	ਰਜੋ	HH	-	144	ਜਜ	NN	0 0	(1 (1 (1)	(1)

<pre>     SEQ ID NO 46     TYPE: PRT     TYPE: PRT     TYPE: PRT     CRGANISM: Artificial Sequence     TYPE: PRT     ORGANISM: Artificial Sequence     CRGANISM: Artificial Sequence     ORGANISM: Artificial Sequence     CRGANISM: Artificial Sequence     CRGANISM: Artificial Sequence     US-10-162-012-46     Query Match     Z5.0%; Pred. No. 9.5e-50;     Matches 179; Conservative 74; Mismatches 168; Indels 90; Gaps 18;     Matches 179; Conservative 74; Mismatches 168; Indels 90; Gaps 18;     Matches 179; Conservative 74; Mismatches 168; Indels 90; Gaps 18;     Matches 179; Conservative 74; Mismatches 168; Indels 90; Gaps 18;     D     Z ALVAALGPLSFGPALGYDSFAIPSLORAAPAPAFLDDAAASWFGAVT 77     D     Z ALVAALGGGFLFGYDTGVIGGFLALIDFLFFFGLIFTSSGALAELVGYFTTAQVMLLGG 126     D     S9 IFPLGALLGSFLPAGKTLSLLLCSVFFVAGFAVTTAAQDVWMLLGG 126     D     S9 IFPLGAFLGSFLPAGKTLSLLLCSVFFVAGFAVTTAAQDVWMLLGG 126     D     S9 IFPLGAFLAGSFLPAGKTLSLLLCSVFFVAGFAVTTAAQDVWMLLGG 126     D     S9 IFPLGAFLAGSFLPAGKTLSLLLCSVFFVAGFAVTTAAQDVWMLLGG 126     D     S9 IFPLGAFLAGSFLPAGFARTLSLLLCSVFFVAGFAVTTAAQDVWMLLGG 126     D     S9 IFPLGAFLAGFAFLPAFRAFLAFLAFLAGFLAFLAGFATHACHAPATLAGAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHACHAPATHAPAT</pre>	US-09-489-039A-11902 Sequence 11902, Application US/09489039A Fateun No. 6610836 GENERAL INFORMATION: APPLICANT: Gary Breton et. al TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUMBER US/09/489, 039A CURRENT FILING DATE: 2000-01.27 FRIDE REFERENCE: 1999-01.29 NUMBER OF SEQ ID NOS: 14342 SEQ ID NO 11902 LENGTH: 514 TYPE: PRT
	QY       336       FGAYFKLTQGGPCNSSHVAISAPVASQPUDASVGLAML-AVGSMCLFIAGFAVGWGPIPW       394         Db       359       I[]       ::::::::::::::::::::::::::::::::::::
7       RLITGLAGCGVASLVAPVYISEIAYPAVRGLIGSCVOLMVVGILLAYLAGWUL17         7       RLITGLAGCGVASLVAPVYISEIAYPAVRGLIGSCVOLMVVVGILLAYLAGWUL17         9       RVLVGLGVGGVLVMNYISEIAPRALRGALGSLYQLATTIGILVAAIIGLIGLNKTNNDS         17       IIIIIII       IIIIIIII         18       IIIIIIIIIIIIIIIIIIIIIIIIIIIVAAIIGLIGLUKAAIIGLIGLNKTNNDS       17         9       RVLVGLGVGGVLVMNTSEIAPRALRGALGSLYQLANTTOGRAMAALRFLMGSEO-GWE       23         0      EWRMLAUGCVPPSLMLLLMCFMPETPRFLLTOHRROEAMAALRFLMGSEO-GWE       23         9       ALNSWGWRIPLGLQUVPALLLLIGLLFLPESPRMLVEKGKLEBAREVLAKLRGVEDVDGE       23         9       ALNSWGWRIPLGLQUVPALLLLIGLLFLPESPRMLVEKGKLEBAREVLAKLRGVEDVDGE       23         9       DPPIGAEQSFHLALLROPGITYFPILGVSLMAFOQLSGVNAVMFYA       27         16       IIIII:       ::::::::::::::::::::::::::::::::::::	

Query Best I Matche	Query Match 24.6%; Score 605; DB 4; Length 514; Best Local Similarity 33.3%; Pred. No. 9.1e-49; Matches 155; Conservative 86; Mismatches 187; Indels 40; Gaps 9;
QY	PRGRRVFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPLD
qũ	52 SPRTQRDTRRMMWFVSIAAAVAGLLFGLDIGVISGALPFITDHFTLSSQLQEWVVS 107
λο τ	VVTLGAAAGGVLGGNLVDRAGRKLSLLLCSVPPVAGFAVITAAODVMMLLGGRLLTGLAC
qq	108 SMMLGAAIGALFNGWLSFRLGRKYSLMAGAVLFVAGSIGSAFAASVEVLLVARVVLGVAV 167
QY	135 GVASLVAPVYISEIAYPAVRGLLGSCVOLMVVVGILLAYLAGWVLEWRWLAVLGCV 190  :     : :  :    :   :  :  :  :  :  :  :
рþ	168 GIASYTAPLYLSENASENVRGKMISMYQLMVTLGIVLAFLSDTAFSYSGNWRAMLGVLAL 227
QY	191 PPSLMLLLMCFMPETPFLLTQHRRQEAMAALRFLWGSEQGWEDPPIGAEQSFHL 245
qq	228 PAVILIILVVFLPNSPRWLAEKGRHIEAEBVLKMLRDTSEKKADELNEIRESLKLKQGGW 287
QV	SLMAFQQLSGVNA
qa	288 ALEKINRNVRRAVELGMLLQAMQQFTGMNIIMYYAPRIFKMAGFTTTEQQMIATLVVGLT 347
QY	GRRLLLV
qq	348 FMFATFIAVFTVDKAGRKPALKIGFSVMALGTLVLGYCLMQFDNGT 393
QY	VGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNW
qq	LSVGMTMMCIAGYA
QY	422 FLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQ1 470
дQ	450 MIIGATFLTLLDAIGAAGTFWLYTALNVAFIGITFWLIPETKNVTLEHI 498
RESULT 3 US-09-489-03 Sequence 1 Patent No. GENERAL IN. GENERAL IN. GENERAL IN. GENERAL IN. APPLICANT TITLE OF TITLE OF TITLE OF TITLE OF TITLE OF TITLE OF FILE REFE CURRENT A PRIOR FIL NUMBER OF FRIOR FIL NUMBER OF SEQ ID NO LENGTH: CURRENT FIL NUMBER OF FRIOR FIL NUMBER OF FIL NUMBER OF FIL NUMBER OF FI	<pre>BESULT 3 BS-09-489-039A-11933 BS-09-489-039A-11933 BS-09-489-039A-11933 Batent No. 6610836 Fatent No. 6610836 Fatent No. 6610836 Fater No. 6610836 Fater No. 6610836 Fater No. 6610816 Fater No. 661081 Fater No. NUMBER: US 60/117,747 Fater No. 747 Fater Pater Fater No. 14342 Fater Pater Pater Pater No. 14342 Fater Pater Pater Pater No. 14342 Fater Pater Pat</pre>
Query Match Best Local S Matches 149	Match 23.5%; Score 578.5; DB 4; Length 476; ocal Similarity 31.2%; Pred. No. 2.6e-46; s 149: Conservative 84: Mismarches 180: Indale 65: Cane 10:
QY	FLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAAASWFGAVYTLGAAAGGVL 86
qu	28 FEVCFLAALAGLLEGLDIGVIAGALPFIANEFQISAHTQEWVVSSMMFGAAVGAVG 83
QY	87 GGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVAPVYIS 146
đ	84 SGWLSFKLGRKKSLMIGAILFVAGSLFSAAAPNVEILLVSRVLLGLAVGVASYTAPLYLS 143
QV dQ	147 EIAYPARGLIGSCVQLMVVVGILLAYLAGWVLBMRMLAVLGCVPPSLMLLLMCFM 202     :   :     :      : 144 EIAPEKIRGSMISNYQLMITIGILGAYLSDTAFSYSGAWRWMLGVIIIPAVLLLIGVIFL 203

...

us-09-886-954a-1.rai

133 130 130 130 130 130 130 130 131 130 131 131	VLG 188 :   188 .LLG 189 .LLG 189 .FH- 244 .RRM 249 .MSV 296 .ATI 309 .ATI 309	:  SELL 348 SULT 416 GCS 408 AGCS 408 AGCS 408 TLEQ 469   :		
<pre>133 AGGVASIJVAPVYISEIAYPAVRGLIGSCVQLWVVGILLAVAC 130 FCGLCTGFVPWYIGEISPTALRAGETYAQLGIVGGLVAG 190 FTULPAILOCAMPEEYERFLUTURREEFAARIEFWG 190 FTULPAILOCAMPECESEFFLUTURREEFAARIEFWG 245LULLQDDTYPFICUSIGATVWFYTQAWW 245LULLQDDTYPFICUSIGATVWFYYW 250 SOEKQVTVLELFRAWYRQPIIISIMLQLSQLGGINAVYFY 251 AFVSAQFWASVELAMIAVGSMCLFIAGFAVGGGINAVYFY 257 AFVSAQFWASVELAMIAVGSMCLFIAGFAVGGGGINAVYFY 258 SOEKQVTVLELFRAWYRQPIIISIMLQLSQLGGINAVYFY 259 VVGUTQVLFTAVAALIMDBAGRELLULSGOVGGGINAVYFY 250 GAGVWFIFTVSVFLIARERTLLIL 357 AFVSAQFWASVELAMIAVGSMCLFIAGFAVGGGGGNAVYFY 250 GAGVWFIFTVSVFLIARERTLLIL 357 AFVSAQFWASVELAMIAVGSMCLFIAGFAVGGGGGNAVYFY 250 GAGVWFIFTVSVFLIARERTLLIL</pre>	WVLEWRWL ELKVILGTEDLWP ELKVILGTEDLWP SQCWEDPPIGAEQ (CHEDPPIGAEQ (CHEEAKFKDSS:   ::  CHFKDAGVQEPV CHFKDAGVQEPV	GLGGMAFN EPDLHVKGVATGTI   : CGGGPRPAAMAV 		
133. 130 130 130 130 130 130 130 130	muvugillaylac givigillaylac - amaalrflwgif - amaalrflwgif - amaalrflwgif - amaalrflwgif - 1                         clsgunavmfyaf clsginavfyysi clsginavfyysi	GWGPIEWLLMSEJ GWGPIEWLLMSEJ GPGPIEWFIVAEI FCIFSV1 FCIFSV1 FCIFSV1		REOF 2.C
133. 130 130 130 130 130 130 130 130	VRGLLGSCVQL      ALRGAFGTLNQL ALRGAFGTLNQL PRFLLTUHRRQE PRFLLTNKKEEE PFTIGVSLMAFQ PTTIGVSLMAFQ PTTISIMLQLSQ PTTTSIMLQLSQ PTTTSIMLQLSQ	AGRTLHLI AGRTLHLI SSMCLFIAGRAV : : : : : : : : : : : : 33LLVFVAFFEI : : : : : : : : : : : : : : : : : : :		D MOL USES 
133. 130 130 130 130 130 130 130 130	APVYISEIAYP           	FTVUSVFLVERU FTVUSVFLVERUERU DASVGLAWLAVU DANYSWMSFICIO DNYSWMSFICIO TKEFSSLMEVLA FKEFSSLMEVLA FKEFSSLMEVLA	r 9	on US/0929 lia, Louis Xun NUCLEIC S: 10 CLUTEX S: 10 LUTEX S: 10 CLUTEX S: 10 RES: NUADA S: 10 PDM N: 09/03 -22 NUMBER: NUMBER: NUMBER: NUMBER: NUMBER: NUMBER: NUMBER: NUMBER: NUMBER: S: 15: ISTICS: ISTICS: ISTICS: Calor A Calor NUMBER: ISTICS: ISTICS: Calor Calor NUMBER: S: 2-8906 Calor NUMBER: S: 2-8906 Calor Calor S: 2-8906 Calor Calor Calor S: 2-8006 Calor Calor S: 2-8006 Calor S: 2-8006 S: 2
MAP AT THE AT TH	,		I TAHFEG         I TRAFEG	9-5 ' Applicat: (138547) NFORMATION NFT: WENTION NT: WENTION NT: WENTION F INVENTION F IN
- み st み st み st み st み st み st st st s = #Ss = = = = = = = = = = = = = = = = = = =			Qy 47 Db 46	RESULT 5 RESULT 5 RESULT 5 RESULT 5 RESULT 05 REPLICA APPLICA APPLICA APPLICA TITLE 0 TITLE 0 TITLE 0 TITLE 0 TITLE 0 TITLE 0 TITLE 0 TITLE 0 TITLE 0 APPLICA REDIT REPLAT RELAT RECLA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA TELECA

REFERENCE/DOCKET NUMBER: 07334/072002 TELECOMMUNICATION INFORMATION: TELEPAMUNICATION INFORMATION: TELEFAX: 617/542-5070 TELEFAX: 617/542-8906 TELEX: 200154 INFORMATION FOR SEQ ID NO: 5: SEQUENCE CHARACTERISTICS: LENGTH: 494 amin o acids	<pre>; TYPE: amino acid ; TOPOLOGY: linear ; MOLECULE TYPE: protein ; SEQUENCE DESCRIPTION: SEQ ID NO: 5: US-09-610-417-5</pre>	Query Match 23.4%; Score 575.5; DB 4; Length 494; Best Local Similarity 30.7%; Pred. No. 5.3e-46; Matches 150; Conservative 94; Mismatches 179; Indels 65; Gaps 10;	QY       26 VFLAAFAAALGPLSFGFALGYSSPAIFSLCRAAFPAFKLDDAAASWFGAV 75         :               :               :               :               :               :               :               :               :               :               :               :               :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :       :	Qy       76       VTLGAAAGGVLGGMLVDRAGRKLSLLLCSVPFVAGFAVITAADDVWMLLGGRLLTGL       132         ::        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :        :	QY 133 ACGVASLVAPVYISEIAYPAVECLIGSCVQLMVVVGILLAYLAGWVLEWRWLAVLG 188   : :  :    :  :    :  :	Qy     189CUPPSIMLLIMGENDETRELLTQHRRQE-AMAALRFLMGSEQGEEDPIGAEQSEH-244       Db     :1     :1       Db     190 FTILPAIIQCAALPFCPESPRFLLINKEBEKAKEILQRLMGTEDVAQDIQEMKDESMRM 249	QY 245Lallropgiykpfiiguslmapqqlsgunaumpyafifeeakfkdsslasv 296 250 sqexqutulelfrapnyrqpiiisimlqlsqqlsginavpyystgifkdagugepyyati 309	Qy       297       VUGVIQVLFTAVAALIMDRAGERLILULSGVVMVFSTSAFGAYFKLTQGGFQNSSHVAIS       356         Db       1 :<:         1:::-         1::-          Db       310       GAGVVNTIFTVVSVFLVERAGERTLHLIGLGGMAFCSIL       348	Qy       357       APVSAQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLT       416         C       :       :       ::::::       :::::::       :::::::       :::::::       :::::::       ::::::::       ::::::::       ::::::::::::::::::::::::::::::::::::	Qy     4.17 NWLMAFLVTKEFSSLMEVLRPYGAFWL-ASAECIFSVLPTLFCVDETKGKTLEQ     469       Qy     1     1     1     1     1     1     1     1       Db     4.09 NWTSNPLVGLLFPSATFYLGAYVFIVFTVFTVFLV1FWVFTFFKVPETRGRTFEE     460	Qy         470         ITAHFEGR 477           Db         461         ITRAFEGO 468	RESULT 7 US-09-031-392-10 Sequence 10, Application US/09031392 Fatent No. 5942398 GENERAL INFORMATION: RELICANT: Tartaglia, Louis A. APPLICANT: Tartaglia, Louis A. APPLICANT: Weng, Xun APPLICANT: Weng, Xun APPLICANT: Weng, Xun APPLICANT: Tartaglia, Louis A. APPLICANT: Tartaglia,
Query Match23.4%Score 575.5%DB 3%Length 494;Best Local Similarity30.7%Pred. No. 5.3e-46%IndelsEstMatches 150Conservative94;Mismatches 179;IndelsE5;Gaps10;QY26VFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPAARLDDAAASWFGAV75IndelsIndels15;IndelsE5;Gaps10;Db10LIFAISIATIGSFQFGYURGVINAPEAIIKDFLNYTLEERSETPPSSVLLTSLWSLSVAI69IndelsE5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;E5;	<pre>76 VTLGAAGGVLGGMLVDRAGRKLSLLLCSVFFVAGFAVITAAQDVWMLLGGRLLTGL     ::                                </pre>	QY     133     ACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLBWRMLAVLG     18       Db     130     FCGLCTGFVPMYIGEISPTALRGAFGTLNQLGIVIGILVAQIFGLKVLLGTEDLMPLLLG     18       Db     130     FCGLCTGFVPMYIGEISPTALRGAFGTLNQLGIVIGILVAQIFGLKVLLGTEDLMPLLLG     189       OV     180    CVPPSLMLLIMCFWPETPFFLITOHRROR-AMAAIPFTMGSRDOWDDTGAROSFH     244	:   : :     : : :     : : :   : : : : :		310 GAGVNNTIFTVVSVFLVERAGRATHHLIGLGGMAFCSIL	417 NWIMAFI/UTVEFESIMELIE/AGENCOMGEPULINELEFELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE FILIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/ELH/VONGEPULINELIE/	470 ITAHFER 477	461 ITRAFEGQ	RESULT 6 US-09-610-417-5 Sequence 5, Application US/09610417 ; Patent No. 6346344	; GENERAL INFORMATION; ; APPLICANT: Tartaglia, Louis A. ; TITLA OF INVERTION: MICLARE ACTE MOTINGER ENCODING	CORRESPONDENCE ADDRESS: 10 CORRESPONDENCE ADDRESS: 10 CORRESPONDENCE ADDRESS: ADDRESSE: FLAB & FICHARDSON P.C.	<pre>STREET: Z25 Franklin Street CITY: Boston STATE: MA COUNTRY: NG CONTRY: NG CONTRY: D02110-2804 COMPUTER: Boston COMPUTER: Boston COMPUTER: D02100-2804 COMPUTER: D02004 CONTRARE: Fractoshie OPERATING SYSTEM: Windows Version 2.0 CONTRARE: Fractoshie OPERATING SYSTEM: Windows Version 2.0 CURRENT APPLICATION DATA: APPLICATION DATA: APPLICATION DATA: APPLICATION DATA: APPLICATION DATA: APPLICATION NUMBER: US/09/610,417 PRIOR APPLICATION DATA: APPLICATION NUMBER: 09/299,549 ATTORNEY/AGENT: INFORMATION: ATTORNEY/AGENT: INFORMATION: ATTORNEY/AGENT: INFORMATION: ATTORNEY/AGENT: INFORMATION: ATTORNEY/AGENT: INFORMATION: ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 09/299,549 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 09/299,549 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 09/299,549 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 09/299,549 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 09/299,549 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 15,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 09/299,549 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 15,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 35,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 35,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 35,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 35,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 35,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 35,283 ATTORNEY/AGENT: INFORMATION: ACCOMPTER: 35,283 ACCOMPTER: 35,283 ACCOMP</pre>

۰.

Tue Sep 28 09:09:39 2004

ų,

<u>م</u>

NUMBER OF SEQUENCES: 10 NUMBER OF SEQUENCES: 10 CORRESPONDER ADDRESS: CORRESPONDER FORMIN Street CTTY: BOSCON STATE: MA CTTY: DOSCON STATE: MA CONTRY: USA CONTRY: USA CONTRY: USA ZIP: 02110-204 CONTRY: Disket CONTRY: Disket CONTRY: Disket CONTRY: MA ZIP: 02110-204 CONTRY: BALLOWICH MADIUM TYPE: Disket CONTRY: MA ZIP: 02110-204 CONTRY: STATE CONTRY: MA ZIP: 02110-204 CONTRY: STATE CONTRY: MA ZIP: 02110-204 CONTRY: STATE CONTRY: STATE CONTRY CONTRY: STATE CONTRY CONTRY: STATE CONTRY CONTRY CONTRY: STATE CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY CONTRY	Query Match23.1%; Score 568; DB 3; Length 493; Best Local Is; Conservative 87; Mismatches 160; Indels 89; Gaps 14; Matches 159; Conservative 87; Mismatches 160; Indels 89; Gaps 14; D 16 LaVLIAMGSPOYGNIGVINAPOWIERFYERMLGRXGEXFSVPTITLL 65 D 28 LANEAMIGEROYGNIGVINAPOWIERFYERMLGRXGEXFSVPTITLL 65 D 29 31ADGCUGGRILVACHOTNANULAIAGGLIAGEXERFSVFILTL 125 C 39 31ADGCUGGRILVACHOTNERFICATESUPORTAGEXERFERULI 125 D 20 31
<pre>MEDIUM TYPE: Diskette COMPTER: Inskette CONTER: Instance SYSTEM: Windows5 SOFTWARE: FASESC for Windows Version 2.0 SOFTWARE: TAPLICATION NUMBER: US/0001,392 FILING DATE: 26-FEB-199 ATTORNEY/AGENT INFORMATION: FELTERATION NUMBER: US/0001,392 ATTORNEY/AGENT INFORMATION: RESTERENCE/OFATTON INFORMATION: RESTERENCE/OFATTON INFORMATION: FELTERATION NUMBER: 00134/072001 TELEDRONUICATION INFORMATION: TELERAX: 617/542-8906 INFORMATION RECKTT UNDER: 00134/072001 TELERAX: 617/542-8906 INFORMATION FOR SEQ ID NO: 10: TELERAX: 617/542-8905 INFORMATION FOR SEQ ID NO: 10: TELERAX: 617/542-8906 INFORMATION FOR SEQ ID NO: 10: TELERAX: 700154 INFORMATION FOR SEQ</pre>	QY       126       GRLIFTGLGCUASLVAPVYTSETAYPAVGGLGSCVOLMVYGTILAYLAGWUE

. ....

2004
09:09:39
28
Sep
Tue

Db       303 GVOOPYTATISATVSATVSTVUSSTRETHIL	GGLIFGYD AAAGGVLG ALLSSLVA VAPVYISE VAPVYISE VAPVYISE VAPVYISE VILTIGSL LITIGSL LITIGSL LITIGSL LITIGSL VLFTAVA VVATCVS PVSAQPVD
Db 455 ETKGRTFDEIAAAF 460 RELLT 9 RELLT 9 RELLT 9 RELLT 9 Sequence 10, Application US/09610417 Sequence 10, Application US/09610417 Sequence 10, Application US/09610417 Sequence 10, Application US/09610417 Released 10, Application US/09610417 Released 10, Application US/09610417 Released 10, Application US/09610417 TITLE OF INVENTION: NUCLEDIC ACID MOLECULES ENCODING TITLE OF INVENTION: NUCLEDIC ACID MOLECULES ENCODING TITLE OF INVENTION: NUCLEDIC ACID MOLECULES ENCODING CONRESS OF SEQUENCES 100 CONRESS OF SEQUENCES 100 RATE: MA CONRESS OF SEQUENCES 100 RATE: MA CONRESS 05 CONRESS: TABLE FOM RATE MA CONRESS 100 RATE: MA CONRESS 100 RATE: MA CONRESS 100 RATE: MA CONRESS 100 RATE: MA CONRESS 100 RATE: MA CONRESS 100 RATE: MA RATE MA RATE AND SECON APPLICATION NUMBER: 10, 0134/072002 RATE AND APPLICATION NUMBER: 10, 0134/072002 RATE MALAGEMATION RATE MALAGION: NALLS RATE AND APPLICATION NUMBER: 10, 0134/072002 RATE APPLICATION NUMBER: 10, 0134/072002 RATE APPLICATION NUMBER: 10, 01334/072002 RATE APPLI	Query Match23.1%; Score 568; DB 4; Length 493; Best Local Similarity23.1%; Pred. No. 2, 7e-45; Matches 159; Conservative 87; Mismatches 160; Indels 88; Gaps 14; OY28 LaAPRAALGPLSFGFALGFSPALGFSPALGFSPALPSLDDAASWFGAVTLGA- 80 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

.

RESULT 12 US-00-031-392-6 US-00-031-392-6 Sequence 6, Application US/09031392 Fatent No. 5432938 GENERAL INFORMATION REPLICANT: Tartaglia, Louis A. APPLICANT: Rendy KNUCLEIC ACID MOLECULES TITLE 0F INVENTION: BUCODING GLUTEX AND USES THEREOF NUMBER OF SEQUENCES: 10 CORRESPONDERCSE: 120 ADDRESSE: Title & Richardson P.C. STREET: 222 Franklin Street CONTER: 204 CONTER READABLE FORM: MIDION TYPE: Diskette COMPUTER READABLE FORM: MIDION TYPE: IBM COMPACING STATE: MA CONFUTER READABLE FORM: MIDION TYPE: DISKette CONFUTER READABLE FORM: MIDION TYPE: IBM CONFILIA CONFUTER READABLE FORM: MIDION TYPE: DISKette CONFUTER READABLE FORM: MIDION TYPE: DISKETE CONFUTER READABLE FORM: MIDION TYPE: DISKETE MIDION TYPE: DIN	<pre>INFTREEX: 20054 INFORMATION FOR SED ID NO: 6: INFORMATION FOR SED ID NO: 6: INFORMATION FOR SED ID NO: 5: INFORMATION FOR</pre>
QY       395 ILMMBIFPLHVKGVATGICVLTNWILMAFLYTKEPSSIMEVLEPRAFENLENES         DD       411 LVPSBIFPLEIKSAQOSVVSVNMLFTFLVAQVELIMLCHMK-FGLFLFFAFVLVMSIY 469         QY       455 TLFCVPETKGKTLEQ1 470         QY       455 TLFCVPETKGKTLEQ1 470         DD       470 VFELLFERSAQOSVVSVNMLFTFLVAQVELIMLCHMK-FGLFLFFAFFVLVMSIY 469         QY       455 TLFCVPETKGKTLEQ1 470         DD       470 VFELLFERKGKTLEQ1 470         DD       470 VFELLFERKGKTLEQ1 470         SEGULT 11       ::::::::::::::::::::::::::::::::::::	Query Match22.1%;Score 542.5;DB 4;Length 517,Best Local Similarity29.9%;Press. No. 7:4e-43;Metches 150;Conservative 80;Mitches 202;Indels 61;Gaps 14;Matches 150;conservative 80;Mitches 202;Indels 61;Gaps 14;Db11GGKDYPGRUTLFVFFTCVVATGSLTFGYDIGISGSVTSMPFLKFFFEYUKKWGKGS 70OY11GGKDYPGRUTLFVFFTCVVATGSLTFGYDIGISGSVTSMPFLKFFFEYUKKKGAS 100OY11SGXEYPGRUTLGFTCLAGGAGGUTGSIGSGSVTSMPFLKFFFEYUKKKGAS 100OY11SGYCKTNNOLLGFFTSSLYLAALVSSFFAATVTRVOGKKSMFTGGLTFLIGAALNGAA 130OY11SOVCKTNNOLLGFTSSLYLAALVSSFFAATVTRVOGKKSMFTGGLTFLIGAALNGAA 130OY11SOVCKTNNOLLGFTSSLYLAALVSSFFAATVTRVOGKKSMFTGGLTFLIGAALNGAA 130OY118SUNALLGSTULGAGGASUFUTRVOGKKSMFTGGLTFLIGAALNGAA 130OY118SUNALLGSTULGAGGASUFUTRVOGFANDALLINCYPARASHFILITOFIRALINCYOY118SUNALLGSTULGAGGASUFUTLAGGASUFUTRVOGFANALNIFGOLITTICSTULATVL

Tue Sep 28 09:09:39 2004

ъ.,

٠

Page 7

Db 173 GTLNQLAIVIGILIAQVLGLESLLGTASLWPLLLGLTVLPALLQLVLLPFCPESPRYL 230	QY       210       -LTQHRRQEAMAALRFLWGSEQGWEDPPIGAEQSFHLALLRQPGIYKFFII       259         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	Qy       260       GVSLMAFQQLSGVNAVMFYAETIFFEAKFKDSSLASVVVGVIQVLFTAVAALIMDRAGRR 319         Qy       260       GVSLMAFQQLSGVNAVMFYAETIFFEAKFKDSSLASVVVGVIQVLFTAVAALIMDRAGRR 319         Db       291       AVVLQLSQQLSGINAVFYYSTSIFFETAGVGQPAYATIGAGVNTVFFTLVSVLLVERAGRR 350	QY 320 LLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGLAWLAVGSMC 379       : ::::::::::::::::::::::::::::::	QY       380       LFIAGFAVGWOPIPWLLMSEIFPLHVKGVATGICVLTNNLMAFLVTKEFSSLMEVLRPYG       439         QY       380       LFIAGFAVGWOPIPWFIVAELFSQGPRPAAMAVAGFSNWTSNFIIGMGFQYVAEAMGPY-       448         DD       390       GFVAFFEIGPGPIPWFIVAELFSQGPRPAAMAVAGFSNWTSNFIIGMGFQYVAEAMGPY-       448	QY 440 AFWLASAFCIFSVLFTLFCVPETKGKTLEQITAHF 474	ULT 14 09-610-417-6	<pre>/ Sequence 6, Application US/09610417 / Patent No. 6346374 / GENERAL INPRMATION: / DENTATION: / DENTATION: // DENTATION: //</pre>	TITLE OF INVENTION: NUCLEIC ACID MOLECULES ENCODING	NUMBER OF SEQUENCES: 10	ADDRESSE: FILANCIAS PLOADS: BUDRESE: FILANCIAS PLOADS: STREET: 225 Franklin Street	; CITY: Boston ; STATE: MA · COINTRY. ISA	ZIF: 02110-2804 COMPUTER READABLE FORM:	e ible ndows95	CURENT APPLICATION NATA: CURENT APPLICATION DATA: APPLICATION NUMBER: US/09/610,417	FILING DATE: 05-JUL-2000 FRIOR APPLICATION DATA: PPLICATION NUMBER: 09/299,549	ATTORNEY/AGBNT INFORMATION: ATTORNEY/AGBNT INFORMATION: NAME: Meiklejohn, Ph.D., Anita L.	REGISTRATION NUMBER: 35,283 REFERENCE/DOCKET NUMBER: 07334/072002 TELECOMUNICATION INFORMATION:	TELEFACUE: 91/542-8906	; INFORMATION FOR SEQ ID NO: 6; ; SEQUENCE CHARACTERISTICS: ; FORONGE, EACO TAILOS;	alle amir 3: amir DLOGY:	<pre>// MOLECULE TYPE: protein // SEQUENCE DESCRIPTION: SEQ ID NO: 6: //S-09-610-417-6</pre>	Query Match Query Match Best Local Similarity 30.5%; Pred. No. 3-42; Matches 159; Conservative 56; Mismatches 172; Indels 104; Gaps 16	13 LGPPGGSAPRGRLVFLAAFAAALGPLSFGFALGYSSPA 5
DD 351 TLHLL	QY     380 LFIAGFAVGWGPIPWLIMSEIFPLHVKGVATGICVLINWLMAFLVTKEFSSLMEVLRPYG 439        :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :       :         :  </td <td>Qy     440     AFWLASAFCIFSVLPTLFCVPETKGKTLEQITAHF     474         :   :                 :     :     :     :     :     :     :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :</td> <td>RESULT 13 US-09-299-549-6 ; Sequence 6, Application US/09299549</td> <td>Ā</td> <td>TITLE OF INVENTION: NUCLEIC ACID MOLECULES ENCODING TITLE OF INVENTION: NUCLEIC ACID MOLECULES ENCODING TITLE OF INVENTION: GLUTEX AND USES THEREOF NUMBER OF SEQUENCES: 10 CORRESPONDENCE ADDRESS.</td> <td>ADDRESSES: Planklin Street STREET: 225 Franklin Street CITY: Boston</td> <td>SIATE: MA COUNTRY: USA ZIP: 02110-2804 COMPUTER READAALE FORM:</td> <td>MEDIUM TYPE: Diskette COMPTER: IEM Compatible OBERDITMC SYSTEM: Windowse</td> <td>SOFTWARE: FastSig for Windows Version 2.0 CUBRENT APPLICATION DATA:</td> <td>APPLICATION NUMBER: US/09/299,549 FILING DATE: 26-APR-1999</td> <td>PRIOR APPLICATION DATA: APPLICATION NUMBER: 09/031,392 FILING DATE: 26-FEB-1992</td> <td>ATTORNEY/AGENT INFORMATION: NAME: Meiklejohn, Ph.D., Anita L. Durremenanton underene.</td> <td>REFERENCE/DOCKET NUMBER: 07334/072002 TELECONMUNICATION INCEMALION: TELECONMUNICATION INCEMALION:</td> <td>TELEFAX: 617/542-806 TELEFX: 617/542-806 TELEX: 200154 2.500</td> <td>INFORMATION FOR SEQ ID NO: 6: SEQUENCE CHARACTERISTICS: LENGTH: 509 amino acids TVDR: amino acids</td> <td>MOLECULE</td> <td>21.8%; Score 536; DB 30.5%: Pred. No 3e-42</td> <td>/ Conservative 86, Mismatches 172, Indels 104; Gaps</td> <td>QY 13 LGFPGGSAPRGRRVFLAAFAALGPLSFGFALGYSSPA 50 :   :  :  :     :  : DD B IGSEDGEPPOORVTGTLVAAVFSAVLGSLOFGYNIGVIRAPOKVIEOGYNETWIGEOGPE 57</td> <td>51 IPSLORAAPPAPRLDDDAAASWFGAVVTLGA AAGGVLGGWLV DRAGRXLSL</td> <td>Db 68 GPSSIPP</td> <td>101 113</td> <td>QY 158 GSCVQLMVVVGILLAYLAGWVLEWRWLAVLGCVPBSLMLLLMCFMPETFRFL 209  :    :  :  :  :  :  :  :  :  :  :  :  :</td>	Qy     440     AFWLASAFCIFSVLPTLFCVPETKGKTLEQITAHF     474         :   :                 :     :     :     :     :     :     :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :   :	RESULT 13 US-09-299-549-6 ; Sequence 6, Application US/09299549	Ā	TITLE OF INVENTION: NUCLEIC ACID MOLECULES ENCODING TITLE OF INVENTION: NUCLEIC ACID MOLECULES ENCODING TITLE OF INVENTION: GLUTEX AND USES THEREOF NUMBER OF SEQUENCES: 10 CORRESPONDENCE ADDRESS.	ADDRESSES: Planklin Street STREET: 225 Franklin Street CITY: Boston	SIATE: MA COUNTRY: USA ZIP: 02110-2804 COMPUTER READAALE FORM:	MEDIUM TYPE: Diskette COMPTER: IEM Compatible OBERDITMC SYSTEM: Windowse	SOFTWARE: FastSig for Windows Version 2.0 CUBRENT APPLICATION DATA:	APPLICATION NUMBER: US/09/299,549 FILING DATE: 26-APR-1999	PRIOR APPLICATION DATA: APPLICATION NUMBER: 09/031,392 FILING DATE: 26-FEB-1992	ATTORNEY/AGENT INFORMATION: NAME: Meiklejohn, Ph.D., Anita L. Durremenanton underene.	REFERENCE/DOCKET NUMBER: 07334/072002 TELECONMUNICATION INCEMALION: TELECONMUNICATION INCEMALION:	TELEFAX: 617/542-806 TELEFX: 617/542-806 TELEX: 200154 2.500	INFORMATION FOR SEQ ID NO: 6: SEQUENCE CHARACTERISTICS: LENGTH: 509 amino acids TVDR: amino acids	MOLECULE	21.8%; Score 536; DB 30.5%: Pred. No 3e-42	/ Conservative 86, Mismatches 172, Indels 104; Gaps	QY 13 LGFPGGSAPRGRRVFLAAFAALGPLSFGFALGYSSPA 50 :   :  :  :     :  : DD B IGSEDGEPPOORVTGTLVAAVFSAVLGSLOFGYNIGVIRAPOKVIEOGYNETWIGEOGPE 57	51 IPSLORAAPPAPRLDDDAAASWFGAVVTLGA AAGGVLGGWLV DRAGRXLSL	Db 68 GPSSIPP	101 113	QY 158 GSCVQLMVVVGILLAYLAGWVLEWRWLAVLGCVPBSLMLLLMCFMPETFRFL 209  :    :  :  :  :  :  :  :  :  :  :  :  :

Tue Sep 28 09:09:39 2004

•

us-09-886-954a-1.rai

Search completed: September 27, 2004, 19:30:47 Job time : 36 secs

		201
183 202	13 WLAVLGCVPPSLMLLLMCFMFETPRFLLTOHRROEAMAALRFLWGSBOGWEDPPIGA 239 14       : : : : : : : : : : : : : : : :	1 239 3 261
240 262	<pre>10 EQSFHLALLROPGIYKFFIIGVSLMA-FQQLSGVNAVMFYABTIFEEEKFK 289 1                                      </pre>	C 289 C 317
290 318	290 DSSLASVVVGVIQVLFTAVAALIMDRAGRRILLVLSGVVMVFSTSAFGAYFKLTQGGP 347           :   :	347
348 378	18         GNSSHVAISAPVSAQPVDASVGLAMLAVGSMCLFIAGFAVGMGPIPMLIMSEIFPLHVKG           1         1         :::!!!!!         :::!!!!!           1         :::!!!!!         !!::!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	5 407 5 421
408 422	408       VATGICULTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSULFTLFCUPETKGKTL       467         40       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	467
468 481	58 EQITAHF 474  : 31 EENNRVWKAHW 491	

## This Page Blank (uspto)

2004
:39
60
••
60
28
Sep
Tue

r.

٠

---- -

Abb58057 Drosophil Aag20977 Arabidops Aag20976 Arabidops Aag20978 Arabidops	Aag38869 Arabidops Aag38871 Arabidops	Abb65373 Drosophil Abb57923 Drosophil Abp98504 FRAM cons Aae35106 Human suo	Add22918 Human sug Add22918 Consensus Abg73334 Consensus Abg733164 E. coli a Add37705	Abu28442 Protein e Abp52163 E. coli g Abu14994 Protein e	E. coli Protein						-1) protein.	TRICH-1; vaccine; cystic fibrosis; rosis; amnesia; muscular dystrophy;	r; asthma; bipolar disorder; epilepsy; mood; arrhythmia;	disease; AIDS; anxiety; stroke; cerebral neoplasm; allergy; hizophrenia; polywysitis;	myocarurus; grave s ursease, logical disorder; psoriasis; systemic lupus erythematosus;	ertility; Cushing's disease; otropic; Addison's disease; mis. carrer				domain"	in	iin	1	ИТ	in					
666.5 27.1 444 4 ABB58057 662 26.9 447 3 AAG20977 662 26.9 463 3 AAG20976 661.5 26.9 437 3 AAG20978	26.6 448 3 26.6 464 3 26.5 438 3	26.3 491 4 26.3 491 4 25.0 488 6	255.0 488 0 255.0 488 7 24.5 4472 6 24.5 4472 5	24.1 465 6 24.1 464 5 24.1 464 5	24.1 464 7 23.8 453 6		ALIGNMENTS	88 standard; protein; 477 AA.		-2001 (first entry)	transporter and ion channel-1 (TRICH-1)	transporter and ion channel-1; TRICH-1 herapy; amyotrophic lateral sclerosis;	ension, angina, neurological disorde: ia; depression; Alzheimer's disease;	<pre>pick's disease; ischaemic cerebrovascular disease; AIDS; anxiety; strok Huntington's disease; Parkinson's disease; cerebral neoplasm; allergy; demyelinating disease; mental disorder; Schizophrenia; polymositis;</pre>	disorder; cardiomyopatny; cararact; omyositis; diabetes mellitus; immuno toid arthritis; Siogren's syndrome; ;	cell anaemia; Wilson's disease; inf derma; pulmonary artery stenosis; noo	orbrion symmome, nypercuorescentar	sapiens.		/note=		293 /labe]	320. 339		/labe	WO200146258-A2.	-2001.	22-DEC-2000; 2000WO-US035095.	23-DEC-1999; 99US-0172000P. 14-JJAN-2000; 2000US-0176083P. 21-JJAN-2000; 2000US-0177332P.	200018
238 238 238 238 238 238 260 200 200 200 200 200 200 200 200 200								RESULT 1 AAE04888 ID AAE04888 XX	AC AAE04888; XX	DT 10-SEP-2001	Human			KW Pick's KW Huntin KW demyel				Homo	FH Key ET Domain		FT DOMAIN	FT Domain FT	FT Domain	FT FT Domain		-	XX PD 28-JUN-2001		АА РК 23-DEC РК 14-JAN РК 21-JAN	
gen Ltd.		Search time 126 Seconds hout alignments) .644 Million cell updates/sec	.CVPETKGKTLEQITAHFEGR 477			: 1586107								cted by chance to have a of the result being printed, score distribution.		Description	Aae04888 Human tra	Abp58364 Human sol Aab66932 Human GLU	GLUTX1	Muri	Humar Humar	- V P	GLUTX3	Human		Human Human		Abb65350 Drosophil Abb63758 Drosophil	AD62408 Drosopnil Ab57922 Drosophil Aag13749 Arabidops Aag13748 Arabidops	3750
GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen	protein search, using sw model	September 27, 2004, 19:08:41 ; Searc (without 1069.644	US-09-886-954A-1 2457 1 MTPEDPEETQPLLGPPGGSAC	BLOSUM62 Gapop 10.0 , Gapext 0.5	1586107 segs, 282547505 residues	hits satisfying chosen parameters	ength: 0 .ength: 200000000	Minimum Match 0% Maximum Match 100% Listing first 45 summaries				5: geneseqp2002s:* 6: geneseqp2003as:* 7: geneseqp2003as:*		the number of results predition that the score than or equal to the score by analysis of the total	SUMMARIES	° Query Match Length DB ID	100.0 477 4	100.0 477 6	90.5 478 4	88.0 478 4 87.5 477 4	60.7 326 5 46 2 262 4	46.0 2488 5	38.8 507 4	38.6 507 4	38.6 507 6 38.6 507 6	38.6 507 6 38.6 507 6	36.4 445 4 32.1 489 4	32.1 539 4 31.1 433 4	29.6 465 4 ABB62408 28.7 497 4 ABB57922 27.3 447 3 AAG13749 27 463 3 AAG13749	27.2 437 3
	OM protein - prot	Run on:	Title: Perfect score: 2 Sequence:	table:	Searched:	Total number of ]	Minimum DB seg l Maximum DB seg l	Post-processing:	Database :					Pred. No. is t score greater and is derived		Result No. Score													21 727 22 705 23 670 24	

4
200
0
2
~
9
m
**
δ
0
δ
ö
28
N
~
Sep
Ψ.
OJ
~
Tue
2
-

02-FEB-2000; 2000US-0179758P. 10-FEB-2000; 2000US-0181625P.

(INCY-) INCYTE GENOMICS INC.

ż Burford Baughn MR,

Lu DAM, Yang J, Reddy R; H, Nguyen DB, Yao MG, Gandhi AR; N, Au-Young J, Azimzai Y, Yue Lal P, Hillman JL, Tang YT, Khan FA;

WPI; 2001-418042/44. N-PSDB; AAD09552. Novel human transporter and ion channel proteins useful for treating and preventing transport, neurological, muscle and immunological disorders.

Claim 1; Page 112-113; 160pp; English.

The present sequence is transporter and ion channel-1 (TRICH-1) protein. TRICH is used as vaccine. TRICH is useful for treating a disease or condition associated with decreased expression of functional TRICH, such as transport disorder incluing anyotrophic lateral sclerosis, cystic buchenne muscular dystrophy, angin and hypertension, neurological condition associated muscular dystrophy, charcot-marel sclerosis, cystic buchenne muscular dystrophy, angin and hypertension, neurological disorders including Alzheimariug Alzease, amesia, bipolar disease, disorders including Alzheimariug disease, mental disorder, stroke, cerebral mooplasms, Pick's disease, mental disorder, stroke, cerebral mooplasms, Pick's disease, mental disorder, mood, amxiety, Schizophrenia and seasonal affective disorder, muscle dematonyositis, arrhythmas and asthma and immunological disorders including AIDS, adult respiratory distress syndrome (ARDS), allergies, condinone, systemic lupus exthmatend disorder mac, Sjogren's including AIDS, adult respiratory distress and offere diseases including consume disease, catacing disease, cataracts, infertility, disease, syndrome, systemic lupus extrhmation's disease including disorder serventia, wilson's disease, cataracts, infertility, disease, sickle cell anaemia, wilson's disease, cataracts, infertility, disease, glucose-galactose malabsoriton syndrome, hypercholesteroleamia, cancers protessis and viral, bacterial, fungal, helminthic and procozoal cuffections. TRICH DNA is useful in gene therapy and in diagnostic 

Sequence 477 AA;

Query Match

; 0 120 120 180 180 240 240 300 241 QSFHLALLRQPGTYKPFIIGVSLMAFQQLSGVNAVMFYAFTIFEEAKFKDSSLASVVVGV 300 IQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVS 360 IQUETAVAALIMDRAGRRLLLUULSGUVWVFSTSAFGAYFKLTQGGPGNSSHVAISAPVS 360 AQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLM 420 60 60 1 MTPEDPEETQPLLGPPGGSAPRGRRVFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPP 61 APRLDDAAASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDV APRLDDAAASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLCSVPFVAGFAVTTAAQDV WMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLE WRWLAVLGCVPPSLMLLLMCFMPETPRFLLTTQHRRQEAMAALRFLMGSEQGWEDPPIGAE QSFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGV Gaps ; 0 100.0%; Score 2457; DB 4; Length 477; 100.0%; Pred. No. 5.1e-227; cive 0; Mismatches 0; Indels 0 Conservative Local Similarity Matches 477; ---61 121 121 181 241 301 301 361 Best q  $\delta$ 9 qd  $\delta$ q à 90  $\Sigma$ q  $\delta$ g  $\overline{\partial}$ 

361

g

Identifying candidate p53 pathway modulating agent as therapeutic target for disorders of defective p53 function e.g. cancer, by assaying purified solute carrier family 2 (SLC2A) polypeptide or nucleic acid with a test Human; solute carrier type 2A; SLC2A; glucose transporter; p53; cancer; cytostatic; gene therapy. 477 421 AFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQITAHFEGR 477 Funke RP; 421 AFLVTKEPSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQITAHFEGR Human solute carrier type 2A polypeptide 12735153 and 7657681. с, Ŀ, Francis-Lang H, "sugar transporter domain" .91 .e= "transmembrane domain" "transmembrane domain" "transmembrane domain" 'note= "transmembrane domain" domain" domain" domain" domain" domain" domain" 'note= "transmembrane domain" note= "transmembrane domain" "transmembrane note= "transmembrane note= "transmembrane note= "transmembrane" note= "transmembrane 120. .342 note= "transmembrane" WPT; 2003-201283/19. N-PSDB; ABZ24792, ABZ24793, ABZ24794. location/Qualifiers Belvin M, ABP58364 standard; protein; 477 AA Claim 13; Page 50-52; 58pp; English. 05-JUN-2001; 2001US-0296076P. 10-OCT-2001; 2001US-0328605P. 15-FEB-2002; 2002US-0357253P. 03-JUN-2002; 2002WO-US017419. /note= "tr 127. .149 (first entry) .178 .205 257. .279 294. .313 68. .390 .425 .462 .474 .49 Friedman L, Plowman GD, 'note= /note= note= 'note= -20 (EXEL-) EXELIXIS INC. 440. 83. 80. 29. WO200298467-A1 Homo sapiens. 07-APR-2003 12-DEC-2002. ABP58364; Key Domain agent RESULT 2 ABP58364 3 q

Homo sapiens.

SO

The present sequence is that of human solute carrier type 2A (SLC2A) polypeptides 12735153 and 7657681. In the present invention, genetic screens were designed to identify modifiers of the p53 pathway in Drosophila in which p53 was overexpressed. Human orthologues (polypucieotides and polypeptides) of one such modifier were then cf admitified, including the present polypeptides. SLC2As are glucose identified, including the present polypeptides. SLC2As are glucose cransporter proteins with sugar transporter domains. They are attractive cfung targets for transtment of pathologies associated with a defective p53 signalling pathway, such as cancer. The invention provides in vitro and in vivo methods of assessing SLC2A function. Modulations and for p53 pathway and its members in normal and disease conditions and for developing diagnostic and therapeutic modalities of p53-related pathologies. SLC2A-modulating agents that act by inhibiting or enhancing SLC2A expression. directly, or inding activity, can be identified using methods provides. Include small molecules, nucleic acids, antibodies, antisense oligonucleotides and phosphothioate morpholino oligomers (claimed) 

U X	oligomers (claimed)
30	Seguence 477 AA;
QURE	<pre>Query Match 100.0%; Score 2457; DB 6; Length 477; Best Local Similarity 100.0%; Pred. No. 5.1e-227; Matches 477; Conservative 0; Mismatches 0; Indels 0; Gaps 0;</pre>
QY	1 MTPEDPEETQPLIGPPGGSAPRGRRVFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPP 60
qq	1 MTPEDPEETQPLLGPPGGSAPRGRVFLAAFAAALGPLSFGFALGYSSPAIPSLQPLAAPP 60
Qγ	61 APRLDDAAASWFGAVYTLGAAGGVLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDV 120
qu	61 APREDDAAASWFGAVYTLGAAAGGVLGGWLVDRAGRKLSLELCSVPFVAGFAVITTAAQDV 120
οy	121 WMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLE 180
qq	121 WMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLE 180
Qγ	181 WRWLAVLGCVPPSIMLLLMCFMPETPRFLLTQHRRQEAMAALRFLMGSEQGWEDPPIGAE 240
qa	181 WHINTIN TO THE TRANSPORT OF T
δ	241 QSFHLALLRQPGTYKPFIIGVSLMAFQQLSGVNAVMFYAFTIFEFAKFKDSSLASVVVGV 300
qq	241 QEFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGV 300
ò	301 IQUEFTAVAALIMDRAGRRLLLULSGVVMVFSTSAFGAYFKLTQGGPGNSSHVATSAPVS 360
qa	301 IQUETAVAALIMUUUUUUUUSGVVWVFSTSAFGAYFKLTQGGPGNSSHVAISAPVS 360
Q	361 AQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLM 420
qu	361 AQPUDASVGLAWLANGANCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLM 420
Q	421 AFLVTKEFSSLMEVLRPYGAFMLASAFCIFSVLFTLFCVPETKGKTLEQITAHFEGR 477
qQ	421 AFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVFETKGKTLEQITAHFEGR 477
RESULT	111 3 101 3
	AAB66932 standard; protein; 477 AA.
AC XX	AAB66932;
XH	17-APR-2001 (first entry)
XE	Human GLUTX1.
X M M M X X X X	Human; GLUTX; gene therapy; vaccine; hexose transport modulator; hexose transport disorder; ischaemia; diabetes; hyperglycaemia; hypoglycaemia; glucose metabolism disorder; neurodegenerative disease.
ХХ	

Db 241 HQGFQLALLRRPGIYKPLIIGISLMVFQQLSGVNAIMFYANTIFEEAKFKDSSLASVTVG 300	300 VIQVLFTAVALIMDRAGRKLLLVLSCVVMVFTSAFGAYFKTTGGGGGNSSHVAISAFV :	DD 301 IIQVLFTAVAALIMDRAGRRLLLALSGVIMVFSMSAFGTYFKLTQSGPSNSSHVGILVPI 360	360 SAQPVDASVGLAMLAVGSMCLFIACFAVGMGPIPMLLMSEIFPLHVKGVATGICVLTNML 41   :	361 SAEPUDVSVGLAMLAVGSMCLFIAGFAVGMGPIPMLLMSEIFPLHVKGVATGLCVLTNMF 420 MAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEOITAHFEGR 47 111111111111111111111111111111111111	UD 421 MAFLVIKBFNSLMBVLKPYGAFWLIAAFCILSVLFILITCVPETKGRTLEQITAHFEGR 478	RESULT 5 AABG6933 standard; protein; 478 AA. ID AAB66933 standard; protein; 478 AA.	AAB66933;	XX DT 17-APR-2001 (first entry)	XX DE Rat GLUTX1. XX	Rat; GLUTX; gene therapy; vaccine; hexose transport modulator; hexose transport disorder; ischaemia; hexose transport disorder; ischaemia;	"Typogry carmina; grucose meraborism ursoluer; meurodegenerative	Rattus sp.	PN WO200104145-A2. XX	18-JAN-2001.	14-JUL-2000;	14-JUL-1999; 27-AUG-1999;	13-JUL-2000;	PA (UTLA-) UNIV LAUSANNE. XX	Thorens B	DR WFI; 2001-112615/12. DR N-PSDB; AAF55866.	Nucleic acids encoding GLUTX glucose transporter proteins, useful in nevention diamosis and treatment of herose transmost diamosis	prevention, uragnosis and ureaument c ischemia and diabetes. Claim 11. Bane 71-72. 124mm. Fundlich	Clube the state of the state of state to stitute (AABECOSE AABECOID	THE PRESENT INVENTION FEARER OF OUCH \$TOTA FUCERING (ARTORDAD-ARTOSD) and ARB66932-AAB66941). THE GUTUT PROTEINS ARTOR FEARE TELER TO THE FACULTATIVE glucose carriers GLUT1-GLUTS and have hexose binding and/or transport	CU TUTUTON. THE GLUIX PTOTEINS MAY DE USED IN THE DIAGNOSIS, PTEVENTION AND CC TTEATMENT OF NEXOSE TRANSPORT disorders such as ischaemia, diabetes, CC hyperglycaemia, hypoglycaemia, a glucose metabolism disorder and/or a CC neurodegenerative disease. The present sequence is rat GLUTXI	XX SQ Sequence 478 AA;	Query Match88.0%; Score 2162.5; DB 4; Length 478;Best Local Similarity85.4%; Pred. No. 9.9e-199;Matches 408; Conservative33; Mismatches 36; Indels 1; Gaps 1;	FGFALGYSSPAIPSLC            : FGFALGYSSPAIPSLR
RESULT 4 AAB66939 ID AAB66939 standard: protein: 478 AA.		XX DT 17-APR-2001 (first entry)	GLUTX1 consensus seg	XW GLUTX; gene therapy; vaccine; hexose transport modulator; human; rat; KW hexose transport disorder; ischaemia; diabetes; hyperglycaemia; murine; KW hypoglycaemia; glucose metabolism disorder; neurodegenerative disease. XX		OS Rattus sp. XX PN W0200104145-A2.	XX PD 18-JAN-2001.	PF 14-JUL-2000; 2000WO-IB001042.	PR 27-AUG-1999; 99US-0143907P. PR 27-AUG-1999; 99US-0151140P.	23-FEB-2000; 13-JUL-2000;	PA (UYLA-) UNIV LAUSANNE.	PI Thorens B, Ibberson M, Uldry M;	AX DR WPI; 2001-112615/12.	Nucleic acids encoding GLUTX glucose transporter proteins, useful in		XX PS Claim 11; Page 74-75; 124pp; English. XX			treatment of hexose transport disorders such as ischaemia, diabetes, hyperglycaemia, hypoglycaemia, a glucose metabolism disorder and/or a		SQ Sequence 478 AA;	Query Match 90.5%; Score 2224.5; DB 4; Length 478; Best Local Similarity 88.9%; Pred. No. 1.1e-204; Matches 425; Conservative 23; Mismatches 29; Indels 1; Gaps 1;	PEDPEETOPLLGPPGGSAPRGRRVFLAAPAAALGPLSFGPALGYSSBAIDSIORAAAD	I :       :	QY       61       APRLDDAAASWFGAVYTLGAAGGVLGGWLVDRAGRKLSLLLGSVPFVAGFAVITAAQDV       120         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	QY 121 WMLLGGBLLLTGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLE 180	Db 121 WMLIGGRLLITGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVTGILLAYVAGWVLE 180 Qy 181 WRMLAVLGCVPPSLMLLLMCFMPETPRFLLTQHRRQEAMAALRFLWGSEQGWEDPPIGAE 240	DD 181 WENLAVLGCVPPTLMLLLMCYMPETPRFLLTQHQYQEAMAALRFLWHHHHHHHHHHHHHHHHH QY 241 -QSFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVG 299

ì

ł

Tue Sep 28 09:09:39 2004

~

us-09-886-954a-1.rag

61 APRLDDAAASWFGAVVTLGAAAGGVLGGMLVDRAGFKLSLLLCSVPFVAGFAVITAAQDV 120 	<pre>121 WMLLGGRLLTGLACGVASLVAPVYISBIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLE 180 121 WMLLGGRLLTGLACGVASLVAPVYISBIAYPAVRGLLGSCVQLMVVTGILLAYVAGWVLE 180 121 WMLLGGRLLTGLACGVASLVAPVYISBIAYPAVRGLLGSCVQLMVVTGILLAYVAGWVLE 180</pre>	<pre>181 WRWLAVLGCVPPSLMLLLMCFMPETPRFLLTQHRQEAMAALRFLWGSEQGWEDPPIGAE 240 181 WRWLAVLGCVPPTLMLLLMCYMPETPRFLLTQHQYQEAMAALRFLWGSEGGWEBPPVGAE 240 181 WRWLAVLGCVPPTLMLLLMCYMPETPRFLLTQHQYQEAMAALRFLWGSEEGWEBPPVGAE 240</pre>	241 - OSFHLALLRQPGIYKPFIIGVSLMAFQOLSGVNAVMFYAETIFEEAKFKDSSLASVVVG 299 [     :  :  :  :      :	<pre>300 VIQVLFTAVAALIMDRAGRRLLLVLSGVWVFSTSAFGAYFKLTQGGPGNSSHVAISAPV 359 301 IIQVLFTAVAALIMDRAGRKLLLALSGVIMVFSMSAFGTYFKLTQGGPSNSSHVGLLVPI 360</pre>	<pre>360 SAQPUDASVGLAMLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWL 419 11:1                                    </pre>	420 MAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEOITAHFEGR 477 	<pre>SUT 6 B6034 standard; protein; 477 AA. A866034 standard; protein; 477 AA. A866034 I7-AFR-2001 (first entry) Murine GLUTX; gene therapy; vaccine; hexose transport modulator; Murine; GLUTX; gene therapy; vaccine; hexose transport modulator; Murine; GLUTX; gene therapy; vaccine; hexose transport modulator; Murine; GLUTX; gene therapy; vaccine; hexose transport disease. Murine; GLUTX; gune; gung. gung.</pre>
vo da	ୟ ସ୍ପ	VQ dq	QY Db	A Dp	QY Db	VO da	AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AABSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASAA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA AASSA

88888	function. The GLUTX proteins may be used in the diagnosis, prevention and treatment of hexose transport disorders such as ischaemia, diabetes, hyperglycaemia, hypoglycaemia, a glucose metabolism disorder and/or a neurodegenerative disease. The present sequence is murine GLUTX1
SQ	Seguence 477 AA;
QAR	Query Match 87.5%; Score 2150; DB 4; Length 477; Best Local Similarity 85.6%; Pred. No. 1.6e-197; Matches 409; Conservative 33; Mismatches 34; Indels 2; Gaps 2;
δ	1 MTPEDPEETQPL/GPPGGSAPR/GRAVFLAAFAAL/GPL/SFGFALGYSSPA1PSLQFAAPP 60
qq	1 MSPEDPOETQPLLRPPEARTPRGRRVFLASFAAALGPLNFGFALGYSSPAIPSLRRTAPF 60
ò	61 APRLDDAASWFGAVVTLGAAAGGVLGGMLVDRAGRKLSLLLCSVPFVAGFAVTTAAODV 120 
qq	61 ALRLGDNAASWFGAVVTLGAAAGGILGGWLLDRSCKKLSLLLCTVFFVTGFAVITAARDV 120
δ	121 MMLLGGRLLTGLACGVASLVAPVYISETAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLE 180
ପ୍	121 WMLLGGRLLTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
δλ	181 MRWLAVLGCVPPSLMLLLMCFMPETPRFLLTDHERQEAMAALRFLMGSEQGWEDPPIGAE 240
qu	2
δλ	1 -QSFHLALLROPGIYKPFIIGVSLMAFQOLSGVNAVMFYAFTIFEEAKFKDSSLASVUVG 29:
qq	VTVG 30
σy	300 VIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPV 359 -
qu	301 IIQULFTAVAALIMDRAGRRLLLALSGVINVFSMSAFGTYFKLTQSLPSNSSHVGL-VPI 359
δλ	360 SAQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWL 419 
qu	360 ABEPUDVQVGLAMLAVGSMCLFIAGFAVGMGPIPMLLMSEIFPLHVKGVATGICVLFNWF 419
δλ	420 MAFLVTKEFSSLMEVLRPYGAFMLASAFCIFSVLFTLFCVPETKGKTLEQITAHFEGR 477
qq	420 MAFLYTKEFNSVMEMLRPYGAFWLTAAFCALSVLFTLTVVEETKGRTLEQVTAHFEGR 477
RESU	SULT 7 B89717
	A
AC	ABB89717;
LD X	24-MAY-2002 (first entry)
S E S	Human polypeptide SEQ ID NO 2093.
1 2 2 3 1 2 2 3	<pre>immunosuppressive; nootropic; neuroprotective; antivi cc; hepetotropic; antidabetic; antifinflammetory; antiu antifindant; antifiateria; antifindal antivarasi</pre>
2 A A I	the product and the protein.
x s x	Homo sapiens.
NA S	WO200190304-A2.
8 G X	29-NOV-2001.
44 AV	18-MAY-2001; 2001WO-US016450.
A A A	19-MAY-2000; 2000US-0205515P.
PA	(HUMA-) HUMAN GENOME SCI INC.
Id	Birse CE, Rosen CA;

XX OS Homo sapiens. XX PN WO200149728-A2. XX PD 12-JUL-2001. XX PF 28-DEC-2000; 2000WO-JP009359. PR 06-JAN-2000; 2000JP-00000585. PR 06-JAN-2000; 2000JP-00000585. PR 01-JAN-2000; 2000JP-00002299. PR 11-JAN-2000; 2000JP-00002299.	<pre>PR 03-FEB-2000; 2000JP-00058367. PR 03-FEB-2000; 2000JP-00058367. PA (PROT-) PROTEGENE INC. PA (FACA ) SAGAMI CHEM RES CENT. PA (FACA ) SAGAMI PA (FACA ) SAG</pre>	peptide of the invention may be used reatment of diseases associated with xpression. The polynucleotides may be inserting the nucleic acids into a xpress the protein. The polynucleoti may also be used as DNA probes in d e therapy. The polypetides may also on of antibodes and in assays to id ypression and activity. The polypedia is nutritional supplements, to modula tion activity, to modulate immune st is nutritional supplements, to modula to reatment of microbial infections is multiple sclerosis, rheumatoid art to roudiate haemacopoiesis, to modulate controlling fertility), to modulate cactivity, to modulate haemostatic odulate receptor ligand activity, to tumour growth a distribute haemostatic tumour growth a distribute activity, to	<pre>Similarity 91.4%; 5001 1101 10 10 10 10 10 10 10 10 10 10 1</pre>
<pre>XX WFI; 2002-122018/16. DR N-FSDB; ABL90126. XX Novel 1405 isolated polypeptides, useful for diagnosis, treatment and PT prevention of neural, immune system, muscular, reproductive, PT gastrointestinal, pulmonary, cardiovascular, renal and proliferative PT disorders. XX Claim 11; SEQ ID NO 2093; 2081pp + Sequence Listing; English. XX The invention relates to novel genes (ABL99449-ABL90853) and proteins CC (ABB89040-ABB90444) useful for prevention, treating or ameliorative</pre>	c medical conditions e.g. by protein or gene therapy the genes are isolated from a range of human tissues disclosed in the specification. The nucleic acids, proteins, antibodies and (ant) agonists are useful in the diagnosis, treatment and prevention of: (a) cancer, e.g. breast and covarian cancer and other cancers of the adrenal gland, hone, hone marrow, breast, gastrointestinal tract, liver, lung, or urogenital; (b) immune disorders e.g. Addison's disease, allergies, autoimme haemolytic anaemia, autoimmune thyroiditis, diabetes mellitus, Crohn's disease, multiple sclerosis, rheumatoid as mycoratial ischaemias; (d) wound healing ; (e) neurological diseases e.g. cerebral anoxia and opilepsy; and (f) infections. Note: The sequence data for this patent did not form part of the printed specification, bublished_pct_sequences from WIPO at ftp.wipo.int/published_pct_sequences	Query Match60.7%;Score 1491;DB 5;Length 326;Best Local Similarity96.3%;Pred. No. 1.9e-134;0;Gaps0;Matches209;Conservative1;Mismatches10;Indels0;Gaps0;CY164MVVVGILLAYLAGWULBWRMLAVLGCVPFSLMLLLMCFMFETPRFLLTOHRROEAMAALR223111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111	t; imicrobi abetes; inetic;

٨

RESULT 10 AAB66938 ID AAB66938 standard; protein; 503 AA. XX AAB66938;	XX DT 17-AFR-2001 (first entry) XX DE Rat GLUTX3.	riposi decenta stated metadorem distat, neurodo metadore distates distas sp.	XX PN WO200104145-A2.	XX PD 18-JAN-2001. VV	XX PF 14-JUL-2000; 2000WO-IB001042. XX	14-JUL-1999; 27-AUG-1999;	PR 23-FEB-2000; 2000US-0184285P. PR 13-JUL-2000; 2000US-00616132.	XX PA (UYLA-) UNIV LAUSANNE.	XX PI Thorens B, Ibberson M, Uldry M;	XX DR WPI; 2001-112615/12. DR N-PSDB; AAF55871.	XX PT Nucleic acids encoding GLUTX glucose transporter proteins, useful in the PT prevention, diagnosis and treatment of hexose transport disorders, e.g. PT ischemia and diabetee.	Claim 11	vention 941). Th rs GLUT1 SLUTX pr SLUTX pr SLUTX pr store tr hypogl	XX SQ Sequence 503 AA;	Query Match 39.5%; Score 969.5; DB 4; Length 503; Best Local Similarity 43.6%; Pred. No. 4.2e-94; Matches 212; Conservative 80; Mismatches 175; Indels 19; Gaps 7;	QY       3 PEDPRETQPLLGPPGGSAPRGRNFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAP 62	63 RLDDAASWFGAVVTLGAAGGVLGGWLVDRAGRKLSLLLCSVFVAGFAVITAAQDVWM 	Db 74 HULL HULLET HULLET HULLET HULLET THE THE THE THE THE THE THE THE THE T	134 LLLGRMLTGFAGGLTAACIPVYVSEIAPPGVRGALGATPQLMAVFGSLSLYALGLLLPWR	QY 183 WLAVLGCVPPSLMLLLMCFMPETPRFLLTQHRRQEAMAALRFLMGSEQGWEDPFIG-238        :	Qy     239AEQSFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAK-FKDSSL 293       0y     21       0     25       0     25
		 									l suppressing function and a diseases, such as, cancer.		This invention relates to the CDNA and protein sequences of a novel human protein with cancer suppressing function. The invention also comprises a method for preparing the polypeptide by recombination, and an application of the polypeptide in treating diseases such as cancer, etc. Also disclosed in an antagonist of the polypeptide and its medical action. The present sequence represents a cancer suppressing protein of the invention Sequence 248 AA;		227; Conservative 5; Mismatches 6; Indels 6; Gaps 2; 164 MVVVGILLAYLAGWVLEWKWLAVLGCVPPSLMLLLMCEMPETERFLLTOHRQEAMAALR 223			EEAKFKDSSLASVVVGVIQVLFTAVAALIMDRAGRRLLUVLSGVVMVFSTSAFGAYFKLT 343 		GPQALWSLLACLRE 235	

---

Page 7

Tue Sep 28 09:09:39 2004

.

-

us-09-886-954a-1.rag

us-09-886-954a-1.rag

10 QPLIGPPGGSAPRGRRVFLAAFAAALGPLSFGFALGYSSPA 50 :     3 EPL/GAEGPDYDTFPEKPASPGDRARVGTLONKRVFLATFAAVLGNFSFGYALVYTSPV 62	QY     51     IPSLQRAAPPAPRLDDAAASNFGAVVTLGAAGGGWLVDRAGRKLSLLLCSVPFVAG     110       D     []::]:     []::]:     []]       Db     63     IPALERSLDPDLHLTKSQASNFGSVFTLGAAGGLSAMILNDLLGRKLSIMFSAVPSAG     122       OV     111     FAVITAAODVWMLLGGRLLTGLAGGRLTGGVASLVAPVYISEIAYPAVRGLLGSCVOLMVVVGFL     170	123 YAVMAGAHGLWMLLLGRTLTGFAGGLTAACIPVYVSEIAPPGVRGALGATPQLMAVFGSL	QY       171       Laylagwilewrwlavlgcvppslmllilnepwretlitohrofsed       230         P	QY 231 GWEDPPIGAEQSFHLALLROPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIF 283 243 DVHWEFGQIQDNVRRQSSRVSWAEARAPHVCRPITVALLMRLLQQLFGITPILVYLQSIF 302	QY 284 EEAKFKDSSLASVVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAY 339 :    :::  :::  :::  ::  ::	340 FKLTQGGPGNSSHVAISAPVSAQPVDASVG-LAWLAVGSMCLFIAGFAVGWGPI	DB 360 LHFGFKKLSPNSTAGLESESWOULAQPLAAPAGYLTLVPLLATMETMETAGAPY 116 QY 393 PWLLMSETPPLHVKGVATGLCVLTNWLMAFLVTKEPSSLMEVLRPYGAFWLASAFCTFSV 452 Db 417 TWLLMSEVLPLRAKVASGT(LVLASWLTPFVLTKSFL)VVYSPGLOVPFLPPATTUSY. 476	453 LFTLFCVPETKGKTLEQITAHFE-GR 477 :          ::     :	DD 477 VFTGCCVPETKGRSLEQIESFFRTGR 502	RESULT 12	AAB66937 ID AAB66937 standard; protein; 507 AA.	XX AC AAB66937; XX DT 17-APR-2001 (first entry) XX	DE Human GLUTX3. XX	KW Human; GLUTX; gene therapy; vaccine; hexose transport modulator; KW hexose transport disorder; ischaemia; diabetes; hyperglycaemia; KW hypoglycaemia; glucose metabolism disorder; neurodegenerative disease.	Homo sapiens.	PN W0200104145-A2. XX PD 18-JAN-2001.	XX PF 14-JUL-2000; 2000WO-IB001042.	XX PR 14-JUL-1999; 99US-0143907P. PR 27-AUG-1999; 99US-0151140P. PR 23-FEB-2000; 2000US-0184285P. PR 13-JUL-2000; 2000US-00616132.	XX PA (UYLA-) UNIV LAUSANNE. XX	FI Thorens B, Ibberson M, Uldry M; XX	DR WPI; 2001-112615/12. DR N-PSDB; AAF55870. VV	PT Nucleic acids encoding GLUTX glucose transporter proteins, useful in the PT prevention, diagnosis and treatment of hexose transport disorders. e.g.
QY 294 ASVVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSS 351 ::{ :::} 312 DAAIVGAVRLLSVLIAAVTMDLAGRKVLLYVSASIMFVANLTLGLYVQLVPRTLFDNSTV 371	QY       352 HVAISAPVSAQPUDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATG 411         :                       :       :       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !       !	QY       412       ICVLTNMLMAFLVTKEFSSLMEVLRPYGAFMLASAFCIFSVLFTLFCVPETKGKTLEQIT       471         :    :     :     :     :        :  :	OY 472 AHFEGR 477           DD 492 AFFHYR 497	1	ID AAB66941 standard; protein; 507 AA. XX AC AAB66941;	17-APR-2001 (fir		Homo sapiens. Rattus sp.	XX PN WO200104145-A2.	XX PD 18-JAN-2001. VV	AA PF 14-JUL-2000; 2000W0-IB001042.	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	XX PA (UYLA-) UNIV LAUSANNE.	Thore	WPT, 2001-112615/12. Nucleic acids encoding GLUTX glucose transporter proteins, useful in	preventuou, utagnosis and treatment ischemia and diabetes.	ciaim il/ rade 83-84; iz4pp; English. The economi isocetise estate to strong and isocetise estate.	The relates to GUUY proteins (AAF55865-AAF . The GLUTS proteins are related to the fac aluT1-GLUT5 and have hexose binding and/or t ix proteins may be used in the diagnosis, pr se transport disorders such as ischaemia, di moolvasatis	"IFU-15-1 CONTRACT AND A STUCCE MECADOLIAM ALSOLDER AND/OF MECADOLISM ALSOLDER AND/OF DEURODEGENERATIVE ALSOLDE DEURODEGENERATIVE AISEASE. The present sequence is a consensus seque for GLUTX?	Segn	Query Match 38.8%; Score 953; DB 4; Length 507; Best Local Similarity 42.9%; Pred. No. 1.682;	; Conservative 7

.

Í

4
2004
ი ი
÷
60
: 60
80 70
Sep
Tue

5

•

<pre>PF 07-JUL-2000; 2000EP-00114089. XX 08-JUL-1999; 99JP-00194486. PR 11-JAN-2000; 2000JP-00118774. PR 02-MAY-2000; 2000JP-00183765. XX (HELI-) HELIX RES INST. XX (HELI-) HELIX RES INST. XX OLA T, NiBhikawa T, Isogai T, Hayashi K, Ishii S, Kawai Y; PI Wakamateu A, Sugiyama T, Nagai K, Kojima S, Otsuki T, Koga H; XX DR WPI; 2001-524255/58.</pre>	<pre>XX Big Primers useful for synthesizing full length CDNA clones and their use FT Big Primers useful for synthesizing full length CDNA clones and their use FT in genetic manipulation. XX Claim 8; SEQ ID NO 3034; 1380pp + Sequence Listing; English. XX CC clones. 830 cDNA molecules encoding a human protein have been isolated and nucleotide sequences of 5' - and 3'-ends of the CDNA molecules have CC clones. 830 cDNA molecules encoding a human protein have been isolated clones. 830 cDNA molecules encoding a human protein have been isolated and nucleotide sequences of 5' - and 3'-ends of the CDNA molecules have CC clones. Big the function of the protein encoded by the CDNA. The full for clarifying the function of the protein encoded by the CDNA. The full length clones were obtained by construction of full length enriched CDNA CC inbraries that were synthesised by the oligo-capping method. The primers enable the production of the full length cDNA easily without any special methods. The present sequence is a polypeptide encoded by a full length cC human cDNA of the invention. Note: The sequence data for this patent did for for matt directly from EPO XX format directly from EPO</pre>	Query Match38.6%; score 948; DB 4; Length 507;Best Local Similarity42.7%; Pred. No. 4.9e-82;Matches 216; Conservative 80; Mismatches 166; Indels 44; Gaps 11;QY10 OPLIGPPGGSAPRGRRVFLAAFAALGPLSFGFALGYSSPA 50111111111211131114111511161117111811191119111911111111111111111111111111111111111111111111111111111111111111111111111111111111111111121113121411151116121712182	QY       171 LAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPETFRFLLTQHRQEAMAALRFLMGSEQ       230         Db       183 SLYALGULLPWRWLAVAGEAPVLIMILLLSFMPNSPRFLLFSCRDEFALRALMLRGTDV       241         Db       183 SLYALGULLPWRWLAVAGEAPVLIMILLLSFMPNSPRFLLFSCRDEFALRALMLRGTDV       242         QY       231 GWEDPPIGAEQSFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIF       283         Db       233 DVHWEPEQDDNVRRQSRVSMMAEAAPHVCRFITVALLMAFLQQLGTFPILVYLQSIF       303         CY       234       DVHWEPEQDDNVRRQSSRVSWABAAAPHVCRFITVALLMRLLQGLGTFPILVYLQSIF       302         QY       238       EEAKFKDSSLASVVGVIQVLFFAVALLIMRLLQGLGTFPILVYLQSIF       303         Db       303       DSTAVLLPPRDDAAIVGAVRLLSVLIAALIMDLAGRKVLLFVSANMFAANLTLGIY       359	QY       340       FKLTQGGFQRSSHVAISAPVSAQPVDASVG-LAWLAVGSMCLFIAGFAVGWGFI       392         Db       360       IHFGFRPLSPNSTAGLESESWGDLAQPLAAPAGYLTLVPLLATMLFIMGYAVGWGFI       416         Db       360       IHFGFRPLSPNSTAGLESESWGDLAQPLAAPAGYLTLVPLLATMLFIMGYAVGWGFI       416         QY       393       PWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSV       452         QY       393       PWLLMSEVLPLARGVASGLCVLTNWLMAFLVTKEFSSLMEVLRPYGFFAALGWGFI       416         QY       433       LFTLFCVPERAGVASGLCVLTSWLTAFVLTKSFLPVVSTFGLQVPFFFFAALGLVSL       476         QY       433       LFTLFCVPERAGVASGLCVLASWLTAFVLTKSFLPVVSTFGLQVPFFFFAALGLVSL       476         Db       477       VFTGCCVPETKGRSLEDIESFFFRGK       502
PT ischemia and diabetes. XX FS Claim 11; Page 81-82; 124pp; English. XX FS Claim 11; Page 81-82; 124pp; English. XX FM present invention relates to GLUTX proteins (AAF55865-AAF55871 and CC AAB66932-AAB66941). The GLUTT enclins are related to the facultative cc glucose carriers GLUT1-GLUTS and have hexose binding and/or transport CC function. The GLUTT proteins may be used in the diagnosis, prevention and CC function. The GLUTX proteins may be used in the diagnosis, prevention and CC hyperglycaemia, hypoglycaemia, a glucose metabolism disorder and/or a CC neurodegenerative disease. The present sequence is human GLUTX3 CC Sequence 507 AA:	begacine Duery Match Seest Local S Aatches 217 10 51 51 63 63 111 123 123 123	Qy231 GWEDPPIGAEQSFHLALLROPGIYKFFIGVSLMAFQOLSGVNAVMFYAETIF283Db243 DVHWEFGQLQDNVFRQSSRYSWAEARAPHVCRPITVALLMELLQQLTGITPLLVYLQSIF302Qy284 EEAKFKDSSLASVVGVIQVLPTAVALLMBRAGRRLLLVLSGVVWPESTSAFGAY339Qy284 EEAKFKDSSLASVVGVIQVLPTAVALLMBRAGRRLLLVLSGVWVPESTSAFGAY339Qy303 DSTAVLLPPKDDAAIVGXVRLLSVLIAALTMDLAGRKVLLFVSAAIMFAANLTIGLY359Qy340 FKLTQGGPGNSSHVAISAPVSAQPVDASVG-LAMLAVGSKCLFIAGFAVGMOPI392Qy340 FKLTGGGPGNSSHVAISAPVSAQPVDASVG-LAMLAVGSKCLFIAGFAVGMOPI392Qy340 FKLTGGGPGNSSHVAISAPVSAQPVDASVG-LAMLAVGSKCLFIAGFAVGMOPI392Qy340 FKLTGGGPGNSSHVAISAPVSAQPVDASVG-LAMLAVGSKCLFIAGFAVGMOPI392Qy340 FKLTGGGPGNSSHVAISAPVSAQPVDASVG-LAMLAVGSKCLFIAGFAVGMOPI416Db360 IHFGPRPLSPNSTAGLESESMGDLAQPLAAPAGYTILVPELLATMLFIMGYAVGMOPI416Qy393 PMLLMSEIFPLHVKGVATGLCVLTNMLMAFLVTTKFFSSLMFULTFVFGAFULASFCFFSV452Db417 TMLLMSEVLPLLARRGVASGLCVLLASMLLAFVLTKSFLPVVSFFGLQVFFLFFAAICLVSL476	453 LFTLFCVPETK 453 LFTLFCVPETK 477 VFTGCCVPETK 11111 477 VFTGCCVPETK 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 13417 1341	DT 06-NOV-2001 (first entry) XX XX DB Human polypeptide, SEQ ID NO: 3034. XX Human; full length CDNA; CDNA synthesis; oligo-capping. XX Homo sapiens. XX EP1130094-A2. XX 05-SEP-2001. XX 05-SEP-2001.

· · · · •

us-09-886-954a-1.rag

RESULT 14	qu	63 IPALERSLDPDLHLTKSQASWFGSVFTLGAAGGLSAMILNDLLGRKLSIMFSAVPSAAG 122
ADA84077 ID ADA84077 standard; protein; 507 AA.	27 27	111 FAVITAAQDVWMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGIL 170
ADA84077;	άQ	123 YALMAGAHGIMMLLIGRILITGFAGGLTAACIPVYVSEIAPPGVRGALGATPQLMAVFGSL 182
20-NOV-2003 (first entry)	QY	171 LAYLAGWVLEWRWLAVLGCVPPSLMLLLLMCFMPETPRFLLTQHRRQEAMAALRFLWGSEQ 230
Human SLC2A6 protein.	q	183 SLYALGLLLPWRWLAVAGBAPVLIMILLLSFWPNSPRFLLSRGRDBEALRALAWLRGTDV 242
XX XW human; marker; expressed sequence tag; EST; arabidopsis; tumour; XW stress-induced phenotype; hyperosmotic stress; colon cancer; immunogen; XW vaccine.	νς δ	231 GWEDPPIGAEQSFHLALLEQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAFTIF 283 
-	δy	284 EEAKEKDSSLASVVVGVLQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAY 339 :
W02002103028-A2.	q	303 DSTAVLLPPKDDAAIVGAVKLLSVLIAALTMDLAGRKVLLFVSAAIMFAANLTLGLY 359
27-DBC-2002.	õ	
30-MAY-2002; 2002WO-IB004189.	q	360 IHFĠPRPLŚPNSTAGLEŚESWGDLAQPLAAPAGYLTLVPLLATMLFIMGYAVGWGPI 416
30-MAY-2001; 2001US-0293999F. 22-OCT-2001; 2001US-0330457F. 19-FEB-2002; 2002US-0357144F.	QY dQ	393 PWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSV 452        :    :   :   :    ::    ::   :    417 TWLLMSEVLPLRARGVASGLCVLASWLTAFVLTKSFLPVVSTFGLQVPFFFFAAICLVSL 476
(BIOM-) BIOM	σλ	453 LFTLFCVPETKGKTLEQITAHFE-GR 477 :         ::     :
Baranova AV, Yankovsky NK, Kozlov AP, Lobashev AV, Krukovskaya LL;	4 <u>0</u>	477 VFTGCCVPETKGRSLEQIESFFRTGR 502
WPI; 2003-175241/17. N-PSDB; ADA84076.	ABP	
Determining if a nucleic acid is a marker for a phenotype/cell type of interest, by global comparison of expressed sequence tags known to be expressed in the phenotype/cell type with all RSTs expressed in normal	AX N	ABP58365 standard; protein; 507 AA. ABP58365;
tissue.	< ち ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	07-APR-2003 (first entry)
Claim 29; Page 458-460; 516pp; English.	DE	Human solute carrier type 2A polypeptide 8923733.
The invention relates to a novel method for determining if a nucleic acid is a marker for a predetermined phenotype/cell type of interest from a biological species. The method comprises performing a global comparison	XXXXX	Human; solute carrier type 2Å; SLC2Å; glucose transporter; p53; cancer; cytostatic; gene therapy.
of a group of expressed sequence tags (ESTs) known to be expressed in the phenotype/cell type of interest with all ESTs expressed in normal tissue	SO	Homo sapiens.
in order to identify ESTs that are preferentially expressed in the phenotype/cell of interest. A method of the invention is useful for	H7 FT	Key Location/Qualifiers Domain 39 61
determining whether a nucleic acid is a marker for a predetermined phenotype or cell type of interest from a biological species, preferably	FT	/note 40.
Arabidopsis or human. The cell type of interest is an abnormal cell such as a tumour cell, and the predetermined phenotype is a stress-induced	н н н н	/not
phenotype such as hyperosmotic stress or high salt conditions. A method of the invention is also useful for determining the procession of color	- (- ) - (- )	
cancer in a human, for detecting a tumour cell, and for regulating or preventing the growth of a fumour cell an articled of the incontion of		Domain 110
useful for detecting the absence or presence of peptides encoded by tumour-associated markers a notimonial of the interference of	LA	
tumunous associated matterns. A putypepude of the invention is useful as an tumunogen for vaccinating an animal. The present sequence represents a tumour-associated antigen of the invention.	L H H H	Domain 165. 187 /note= "transmembrane domain" Domain 191. 213
Sequence 507 AA;	FT FT	/note= "transmembrane 279 301
Query Match 38.6%; Score 948; DB 6; Length 507; Best Local Similarity 42.7%; Pred. No. 4.9e-82; Matches 216; Conservative 80; Mismatches 166; Indels 44; Gaps 11;	н н н н н н н н	/note= "transmembrane domain" Domain 316333 /note= "transmembrane domain" Domain 340 340
QPLLGPPGGSAPRGRRVFLAAFAAALGPLSFGFALGYSSPA 5 :	- I. I. I. - I. I. I. - I. I. I.	
J EPLLGAEGPDYDTFPEKPPPSPGDRARVGTLQNKRVFLATFAAVLGNFSFGYALVYTSPV 62	FT	

٠

Í

0
o
00
გ
σ
0
••
σ
ö
ω
2
ep
Ð
Ŵ
Tue
Þ
É4
-

;

ĥ,

۰

......

11;

QY	340	340 FKLTQGGPGNSSHVAISAPVSAQPVDASVG-LAWLAVGSMCLFIAGFAVGWGPI 392	392
đđ	360	360 IHFGPRPLSPNSTAGLESESWGDLAQPLAAPAGYLTLVPLLATMLF1MGYAVGWGPI 416	416
QY	3 9 3	393 PWLJMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSV 452	452
Дþ	417	417 TWLLMSEVLPLRARGVASGLCVLASWLTAFVLTKSFLPVVSTFGLQVPFFFPAAICLVSL 476	476
QY	453	453 LFTLFCVPETKGKTLEQITAHFE-GR 477 ; i       ;:     :	

477 VFTGCCVPETKGRSLEQIESFFRMGR 502 ą

Search completed: September 27, 2004, 19:26:41 Job time : 130 secs

-

and Page Blank (uspto)

l

4
ò
200
2
Ο
4
60
0
••
60
0
ω
N
Sep
Q
Ŋ
Ø
Tue
•
r

Ξ

ş

.

on 5.1.6 )4 Compugen Ltd.	el :56 ; Search time 45 Seconds (without alignments) 1019.630 Million cell updates/sec	CVPETKGKTLEQITAHFEGR 477		esidues	parameters: 283366		ω		<pre>i predicted by chance to have a i score of the result being printed, total score distribution.</pre>	STES		hypothetical prote probable sugar tra	h 🖬 .		,		់ អ រំ	roton	t r	ц, Ц	probable membrane glucose transport	por	glucose transport hypothetical prote	metabolite transpo sugar transporter-	L-ager transported to the transport of t	monosaccharide tra	probable hexose tr xylose transport p	xylose-proton symp xylose-proton symp	glucose transport
GenCore version (c) 1993 - 2004	sw mode , 19:22	:	ext 0.5	91526 resi	chosen pai		)0% 5 summarie		results to the of the	SUMMARIE	Π	E96782 T14645	D70073	AB0868	B26430	B91091 E85936	F65079	C91105 F85951	T52132	AC0877	G84864 S38981	A31986	A41751 D86426	E70070 T51485	F69587	S25015	T01853 A26430	F91255 B86096	A31556
ienC 1	using 2004	A-1 LGP	Gapext	9619		2000	сст 9-1-4- 9-0-2-		ພ່ກວ່ວ		ВВ	2 10	101	2 10	10	~ ~	100	2	20	101	20	101	20 10	20	1010	10	20 20	20 50	2
-	ch, 27,	- 09 - 886 - 954A - 1 57 MTPEDPEETQPLLGPPGGSA	. 0.	seds'	satisfying	0 2000000000	m Match m Match ig first	* * * * *	numbe n or anal		Length	487	461	471	472	472	464	464 464	496	464	521 493	496	493 580	457 560	464	4 6 L	526 491	491 491	522
Copyright	protein sear September	US-09-8 2457 1 MTPED	BLOSUM62 Gapop 10	283366	hits sa	ength: ength:	Minimum Maximum Listing	PIR 78:* 1: Pir1 2: pir2 3: pir3 4: pir4	No. is the greater than s derived by	مد	Watch I	29.9	24.7	24.7	24.5	24.5	24.1	6.62	23.8	23.7	23.7	23.2	23.2 23.1	22.8 22.6	22.6	22.3	22.2 22.2	22.2 22.2	22.1
	1	score:	table:		number of	DB seq l DB seq l	essing:		Pred. No. score grea and is der		Score	734	607	607 606 5	603	603 603	591.5	587.5	584.5	583.5	582 574 5	570.5	569.5 567	560.5 556.5	554.5	548.5	546.5 546	546 546	542.5
	OM protein Run on:	Title: Perfect s Sequence:	Scoring t	Searched:	Total num	Minimum D Maximum D	Post-proces	Database	Pré scc anc	-	.oN DULT	40	* M	4 0	ηw	۲- ۵۵	) 0 1	110	125	7 <b>4</b>	15 16	17	18 19	20	555	24	25 26	27 28	29

」 ミ ヨ ミ ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス ス	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222222222222222222222222222222222222222	2 - - - - - - - - - - - - -	0.0.0.4.0.4.0.0.4.0.0.4.0.0 0.0.10.0.0.0.4.0.0.0.0 4.0.00000040000004 4.0.0000004000004	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S38435 S38435 T12199 A33801 A33801 A3264 H85059 C84593 S1202 C84593 S1202 T10122 A32101 A32101 A32101 A32101	hexose transport plucose transport monosaccharid tran moscle-fat glucose glucose transport probable sugar tra probable sugar tra plucose transport glucose transport glucose transport glucose transport plucose transport glucose transport plucose transport glucose transport probable sugar tra probable sugar tra probable sugar tra probable sugar tra probable sugar tra probable sugar tra probable sugar tra plucose transport glucose transport	
RESULT 1 E96782 hypothetical protein F22H5 C;Spate: 02-Mar-2001 #seque C;Accession: B9782 R;Theologis, A.; Ecker, J. Chin, C.W.; Chung, M.K.; ansen, N.F.; Huupes, B.; H Nature 408, B16-820, 2000 A;Authors: Hunter, J.L.; J Nature 408, B16-820, 2000 A;Authors: Sallaberg, S.L.; A;Authors: Sallaberg, S.L.; A;Title: Sequence and anal A;Reference number: A6141 A;Reference and anal A;Reference and anal A;Reference number: A6141 A;Reference 196782 A;Gene: F22H5.6 A;Gene: F22H5.6 A;Guperfamily: glucose tra C;Superfamily: glucose tra	SULT 1 5/92 5/92 5/92 5/92 5/92 5/92 5/92 5/92	abido abido BB-1000 BB-2000 BB-2000 BB-2000 BB-2000 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1200 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D1000 D10000 D1000 D1000 D	ріп рабора сскага сскага л.с. л.с. сскага м.К. м.К. л.с. с. с. с. с. с. с. с. с. с. с. с. с.	i F22H5.6 (imr is thaliana #sequence_rev #sequence_rev m.K.; Conn, 1 B.; Huizar, 2000 M.K.; Conner B.; Huizar, 2000 C.; Fraser, G.; Fraser, G.; Fraser, G.; Fraser, G.; Fraser, G.; Fraser, G.; Fraser, G.; Fraser, S.L.; Schwa: G.; Fraser, G.; Fraser, S.L.; Schwa: S.L.; Schwa: S.T.; Schwa: Schwa: Schwa: Schwa: Schwa: Schwa: Schwa: Schwa: Schwa:	.6 (jmm) liana nce_res res rank, Pa n, v raser, schwa schwa schwa n10 13 13 13 13 13 13 13 13 13 13 13 13 13	ALIGNMENTS mported] - Arabidopsis (mouse-ear cress) evision 02-Mar-2001 #te alm, C.J.; Federspiel, 1 L.; Conway, A.B.; Conw , L. s, J.; Johnson-Hopson, i.iu, Z.A.; Sakan, H. Sakan, H. Sakan, H. Sakan, H. c, C.M.; Shinn, P.; of Chronsome 1, df the D:21016719; PMID:1111307 ; NID:g10092276; PIDN:A ; NID:g10092276; PIDN:A ; Protein t protein t protein t protein t pred. No. 8.9e-47;	na nge 23-Mar-2001 Kaul, S.; White, R.; Creasy, T.H.; an, S.; Khaykin, . J.S.; Maiti, R. Arabidopsis. Arabidopsis. 9.1; GSPDB:GN001.	о ^н м
Matches Q Db Q Q Q Db Q Q Q Db Q Q Q Db Q Q	256 104 164 164 164 254 254 254 254 254 251 251 251 251 251 251 251 251 251 251	VLA VLA ASG ASEL ASEL PRF PRF PRF PRF PRF PRF PRF VFP DRA	Conservat Laafaaalop acvlivalop Gwlvdragrk Gwlvdragrk Gylafyigrk Golafyigrk Laponmegll 	CONNECT VALING AAFAALGPLSF CULIVALGFIGF CULIVALGFIGF MUVDRAGRKLSL :      OIAEYIGRKGSL APPAVRGLLGSC APPAVRGLLGSC APPAVRGLLGSC APPAVRGLLGSC APPAVRGLLGSC APPAVRGLLGSC APPAVRGLLGSC APPAVRGLLGSC IIITOPIRRQEAMAV ILLTQHRRQEAMAV IIITOPIRRQEAMAV IIITOPIRRQEAMAV IIITOPIRRQEAMAV IIITOPIRRQEAMAV APPAVRGTLIVLQQ IIIICULULQQ GGRLLLULQG	PEGE FGF FGF FGF FGF FGF FGF FGF FGF FGF	<pre>77, Mismatches 1 ALGYSSPAIPSLORAAPPA ALGYSSPTQAAITKD CGYSSPTQAAITKD SSVFFVAGFAVITAAODVW SSVFFVAGFAVITAAODVW AAIPNIIGMLCISFAKDTS AAIPNIIGMLCISFAKDTS AAIPNIIGMLLAYLAGLAVPW LSVTIGINLAYLLGLEVVW SSTUGSEOGMEDPPIGAEO STUAWFYAETIFEEAKFK STUAGFETDITVEVNE STUAWFYAETIFEEAKFK STUGSEOGMEDPPIGAEO STUGSEOGMEDPPIGAE</pre>	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	23 23 23 23 23 23 23 23 23 23 23 23 23 2

09:09:40 2004 Tue Sep 28

<pre>C;Accession: D70073 R;Kunst, F:; Ogaasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Berte R;Kunst, F:; Ogaasawara, N.; Moszer, I.; Albertini, A.M.; Alloni, G.; Azevedo, V.; Carter, N.M.; Ch A.; Ehrlich, S.; Brouillet, S.; Bruschi, C.V.; Caldwell, B.; Capuano, V.; Carter, N.M.; Ch A.; Ehrlich, S.D.; Emmerson, P.T.; Entian, K.D.; Errington, J.; Fabret, C.; Ferrari, E. Nature 390, 249-256, 1997 A;Authors: Foulger, D.; Fritz, C.; Fujita, M.; Fujita, Y.; Fuma, S.; Galizzi, A.; Galle iech, J.; Harwood, C.R.; Henaut, A.; Hilbert, H.; Holsappel, S.; Hosono, S.; Hullo, M.F Koetter, P.; Koningstein, G.; Krogh, S.; Amanoo, M.; Kurita, K.; Lapidus, A.; Lardinois A;Authors: Lauber, J.; Lazarevic, V.; Lee, S.M.; Levine, A.; Liu, H.; Masuda, S.; Maueo Y, M.; Ogiwar, K.; Ogiwara, A.; Oudega, B.; Park, S.H.; Parko, V.; Pohl, T.M.; Portecelle</pre>	<pre>Rteger, M.; Rivolta, C.; Rocha, E.; Roche, B.; Rose, M.; Sadoie, Y.; Sato, T.; Scanlon A;Authors: Schleich, S.; Schroeter, R.; Scoffone, F.; Sekiguchi, J.; Sekowska, A.; Sero akeuchi, M.; Tamakoshi, A.; Tanaka, T.; Terspira, P.; Tognoni, A.; Tosato, V.; Uchiyama A;Authors: Yoshikawa, H.F.; Zumatein, E.; Yoshikawa, H.; Danchin, A. A;Authors: Yoshikawa, H.F.; Zumstein, E.; Yoshikawa, H.; Danchin, A. A;Authors: Yoshikawa, H.F.; Zumstein, E.; Yoshikawa, H.; Danchin, A. A;Attle: The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. A;Attle: The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. A;Attle: The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. A;Reference number: A69580; MUID:99044033; PMID:9384377 A;Accession: D70073 A;Reference in 20073 A;Residues: 1-461 <kun> A;Residues: 1-461 <kun> A;Residues: 1-461 <kun> A;Residues: 1-461 <kun> A;Resetuental source: strain 168 C;Genetics: A;Genetics: C;Superfamily: glucose transport protein</kun></kun></kun></kun></pre>	Query Match24.7%Score 607; DB 2; Length 461;Best Local Similarity31.1%; Pred. No. 2e-37;Matches146; Conservative85; Mismatches192; Indels46; Gaps7;Qy25 RVFLAAFAAALGPLSFGFALGYSSFAIPSLQRAAPPAPRLDDAAASWFGAVYTLCAAAGG841:1111:1:1:1111:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	GLACGVASLVAPVY     :::     GLAVGGSTALVPVY	QY     145     ISBIAYPAVRGLIGSCVQLMVVVGILLAYLAGWVLEWRWLAVLGCVPPSLMLLLMC     200       1     1     1     1     1     1     1     1     1       DD     122     LSEMAPTKIRGTLGTMNNLMIVTGILLAYINVYLFTPFEAWRMWVGLAAVPAVLLLIGIA     181	QY 201 EMPETPRFLITQHRROEAMAALRFLWGSEQGWEDPPIGAEQSFHLALLRQ 250     :  : ::::  ::::  : DD 182 EMPESPRWLVKGSEEBARRIMNITHDPKDIEMELAEMKQGEAEKKETTLGVLKA 236	QY       251       PGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGVIQVLFTAV       308         D       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	QY 309 AALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASV 368   :::     :   :   :   :   :   :   :   :	KGVATGICVLTNWLMAFLVTKEF :       : ;   RGAATGFTTLVLSAANLIVSLVF		RESULT 4 Aboses	L-arabinose isomerase [imported] - Salmonella enterica subsp. enterica serovar Typhi (st C:Species: Salmonella enterica subsp. enterica serovar Typhi A;NOte: this species has also been called Salmonella typhi C;Date: 09-Nov-2001 #sequence_revision 090 Nov-2001 #text_change 18-Nov-2002 C;Accession: AB0868 R;ParKhill, J; Dougan, G; James, K.D; Thomson, N.R.; Pickard, D.; Wain, J.; Churcher, th, T.; Connetton, P.; Cronin, A.; Davis, P.; Davies, R.M.; Dowd, L.; White. M.; Farrar
Db       341       [:      :            [              [                QY       374       AVGSMCLFIAGFAVGWGPIPMLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLME       433         QY       374       AVGSMCLFIAGFAVGWGPIPMLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLME       433         Db       387       AVGSWCMFFSLGMGPIPMLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLME       433         Db       387       SVUGVVANVVFFSLGMGPIPWLIMSEILPVNIKGLAGSIATLANWFFSWLITMT-ANLLL       445         QY       434       VLRPYGAFWLASAFCIFGVLFTLFCVDETKGKTLEGUITAHF       474         Db       446       MSSGGTFTLYGLVCAFTVVFVTLWVPETKGKTLEBLOSLF       486	21-Jul-2000 /acuole, and expression	490; 490; 1s 38; Gaps	QY 26 VFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAFPAPRLDDAASWFGAVVTLGAAGGV 85       :           50 VLACVLIVALGPIQFGFTAGYSSFTQSAITNELGLSVAEYSWFGSLSNVGAMVGAI 105	QY     86 LGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVADVY1 145       C     :       106     ASGQISEYIGRKGSLMIAAIPNIIGWLAISFAKDSSFLYMGRMLEGFGVGIISYTVPVY1 165	QY       146       SEIAYPAVRGLIGSCVQLMVVVGILLAYLAGWVLEWERMAVLGCVPPSLMLLLMCFMPET       205         Db       166       SEIAPONLRGALGSVNQLSVTGIMLSYMLGLFVPWRILAVLGILPCTILIFGLFFIPES       225	QY 206 PRFLLTQHRRQEAMAALRFLMGSEQGWEDPPIGAEQSFHLALLRQP 251   :  :  :  :     226 PrwllakwgmmEefevslQvlrgfDTDISLEVNEIKRSVASSSKRTTIRFAELRQR 280	QY 252 GIYKPFIIGVSLMAFQQLSGVNAVMFYAETIPEEAKFKDSSLASVVVGVIQVLFTAVAAL 311 :   :	QY       312       IMDRAGRRLLLVLSGVWNVFFISAFGAYFKLTQGGPGNSSHVAISAPVSAQPVDASVGLA       371         ::::::::::::::::::::::::::::::::::::	QY       372       WLAVGSMCLFIAGFAVGWGPIPMLIMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSL 431         QY       37       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1       1:1	QY     432     MEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQITAHF     474       Db     446     MLSWNSGGTFSIYMVVCAFTVAFVVIWVPETKGRTLEEIQWSF     488	RESULT 3 D70073 metabolite transport protein homolog yxcC - Bacillus subtilis C;Species: Bacillus subtilis C;Date: 05-Dec-1997 #sequence_revision 05-Dec-1997 #text_change 20-Jun-2000

L-arabinose isomerase [imported] - Salmonella enterica subsp. enterica serovar Typhi (st Cispecies Salmonella enterica subsp. enterica serovar Typhi A;Note: this species has also been called Salmonella typhi C;Date: 09-Nov-2001 #sequence_revision 09-Nov-2001 #text_change 18-Nov-2002 A;Accession: AB068 B;ParKhill, J; Dougan, G; James, K.D.; Thomson, N.R.; Pickard, D.; Wain, J.; Churcher, th, T.; Connerton, P.; Cronin, A.; Davies, P.; Davies, R.M.; Dowd, L.; White, N.; Farrar,

۲.

us-09-886-954a-1.rpr

m Page

Query Match       24.7%; Score 606.5; DB 2; Length 472;         Query Match       24.7%; Score 606.5; DB 2; Length 472;         Best Local Similarity       33.7%; Pred. No. 2:3e-37;         Matches 153; Conservative       84; Mismatches 182; Indels 35; Gaps 8;         Qy       30 AFAAALGPLSFGFALGYSSPATPSLQRAAPPARLIDAAASWFGAVTLGAAAGGVLGGM 89         Qy       30 AFAAALGPLSFGFALGYSSPATPSLQRAAPPARLIDAAASWFGAVTLGAAAGGVLGGM 89         Db       26 SIAAAVAGLLEGLDIGVLAGLAFTTDHFVLSSRLQEWVVSSMMLGAALGALFRIGM 81         Qy       90 LVDRAGRLEGLDIGVLAGLAFTTDHFVLSSRLQEWVVSSMMLGAALGALFRIMGM 81         Qy       91 LVDRAGRLEGLDIGVLAGLAFTTDHFVLSSRLQEWVSSMMLGAALGALFRIMG         Qy       92 SIAAAVAGLLEGLDIGVLAGLAFTTDHFVLSSRLQEWVSSMMLGAALGALFRIMG         Qy       91 LVDRAGRLEGLDIGVLAGLAFTTDHFVLSSRLQEWVSSMMLGAALGALFRIMG         Qy       92 SIAAVAGLLEGLDIGVLAGLAFTTDHFVLSSRLQEWVSSMMLGAALGALFRIMG         Qy       93 LSFRLGRKYSLMVGAULFVAGSVGSAFATSVEMLLVARIVLGVAVGTASYTAPLMISEMA         Qy       16.111.11.11.11.11.11.11.11.11.11.11.11.	Db       142 SENVEGKMEMYQLMYTLGIUMAFLSDTAFSYSGNWEAMLGVLALFAVVLIILVFLPNS 201         Qy       206 PRFLLTOHRQEAMAALRFLGGSGGGWEDPPIGAEQSFHLALLR-QPGIYKPFII 259         Db       202 PRWLAEKGRHVEAEEVLRMLRDTSEKARDELNEIRESLKLKQGGWALFKVNRNVRRAVFI 261         Qy       260 GVSLMAFQQLSGVNAVMFYAETIFEBAKFKDSSLASVVUGVIQVLFTAVAALIMDRA 316         Db       260 GVSLMAFQQLSGVNAVMFYAETIFEBAKFKDSSLASVVUGVIQVLFTAVAALIMDRA 316         Db       262 GMLLQAMQQFTGMNILMYYAPRIFKMAGFTTEQQMVATLVUGLFFMFATFIAVFTVDKA 321	Qy       317 GRRLLLULSGVUMUPSTSAFGAYFKITQGGPONSSHVAISAPVSAQPVDASVGLAMLAVG       376         Db       322 GRKPALKTGPSVMAJGTLVLG-YCLMQFDUGTA                   1                 Qy       377 SMCJFJAGFSVMAJGTLVLG-YCLMQFDUGTASGLSMLSVG       363         Qy       377 SMCJFJAGFSVMAJGTLVLG-YCLMQFDUGTASGLSMLSVG       363         Qy       377 SMCJFJAGFSVMAJGTLVLG-YCLMQFDUGTVLTNWIMAFLVTKEFSGLWEVLR       436         Db       364 MTMACJAGYANSAAPVWILGSEJQPLKCKDFGITCSTTTNWVSNMIIGATFLTLLDAIG       423         Qy       437 PYGAFWLAFASAFCIFSVLFTLFCVDFFKGKTLEQI       470         Qy       437 PYGAFWLAFFTLFVVFLIPFTKVVTLEHI       457         Db       424 AAGTFWLYTALNVAFIGVTFWLIPFTKVVTLEHI       457	<pre>RESULT 6 B26430 L-arabinose isomerase (BC 5.3.1.4) - Escherichia coli (strain K-12) C.Species: Escherichia coli C.Species: Escherichia coli C.Species: B5-Oct-1988 #sequence_revision 05-Oct-1988 #text_change 01-Mar-2002 C.Accession: B26430; A28075; T40996; B65067 R;Maiden, M.C.J.; Davis, E.O.; Baldwin, S.A.; Moore, D.C.M.; Henderson, P.J.F. Nature 325, 641-643, 1987 A;Title: Mammalian and bacterial sugar transport proteins are homologous. A;Reference number: A93389; MUID:87115669; PMID:3543693 A;Status: nucleic acid sequence not shown; not compared with conceptual translation</pre>	A;Molecule type: DNA A;Residues: 1-472 <nmi> A;Residues: 1-472 <nmi> B;Residues: 1-472 <nmi> C.J. Jones-Mortimer, M.C.; Henderson, P.J.F. J. Biol. Chem. 263, 8003-8010, 1988 A;Title: The cloning, DNA sequence, and overexpression of the gene araE coding for A;Reference number: A28075; MUID:88228015; PMID:2836407 A;Residues: 1-472 <na2> A;Residues: 1-472 <na2></na2></na2></nmi></nmi></nmi>	A;Cross-references: db:u03/3/2; NID:9143520; FIDW:AMA23493.1; FIDU:91435 B;Stoner, C:; Schleif, R. J. Mol. Biol. 171, 380-381, 1983 A;Title: The araE low affinity L-arabinose transport promoter. Cloning A;Reference number: 140996; MUID:84114868; PMID:6319708 A;Reters: preliminary; translated from GB/EMBL/DDBJ A;Molecule type: DNA	<ul> <li>A;Restdues: 1-25, Y, 439, XY &lt; RES, ND: 940940; PIDN:CAA25075.1; PID:940941</li> <li>A;Crostsreetces: YMBL:X072; NID:940940; PIDN:CAA25075.1; PID:940941</li> <li>R;Blattner, F.R.; Plunkett III, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, A.; Rose, D.J.; Mau, B.; Slao, Y.</li> <li>A.; Rose, D.J.; Mau, B.; Slao, Y.</li> <li>A;Title: The complete genome sequence of Escherichia coli K-12.</li> </ul>
<pre>, S.; Moule, S.; O'Gaora, P. Nature 413, 848-852, 2001 A;Authors: Parry, C.; Ouail, M.; Rutherford, K.; Simmonds, M.; Skelton, J.; Stevens A;Attle: Complete genome sequence of a multiple drug resistant Salmonella enterica A;Accession: AB066 A;Accession: AB066 A;Accession: AB066 A;Status: preliminary A;Residues: 1-471 <par> A;Residues: 1-471 <par> A;Cross-references: GB:AL513382; PIDN:CAD02842.1; PID:g16504096; GSPDB:GN00176 C;Genetics: A;Genetics: A;Superfamily: glucose transport protein</par></par></pre>	A G.B A	<pre>56 TSRLQEWVVSSMMLGAAIGALFNGWLSFRLGRRYSLMAGAILFVLGSLGSAFASSY 1 121 WMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLE 1 12 FVLIGARVILGVAVGIASYTAPLYLSEMASENARGKMISMYQLMVTLGIVLAFLSDTAFS 1 181 WRWLAVLGCVPPSLMLLLMCFMPETPRFLLTOHRROEAMAALRFLUGSEQGWEDPP 2 181 wRWLAVLGCVPPSLMLLLMCFMPETPRFLLTOHRROEAMAALRFLUGSEQGWEDPP 2 191 wRWLAVLGCVPPSLMLLLMCFMPETPRFLLTOHRROEAMAALRFLUGSEQGWEDPP 2 17 17 YSGNWRAMLGVLALPAVLLIILVVFLPNSPRWLAQKGRHIEAEBVLRMLRDTSEXARDEL 2 237 IGAEQSFHLALLR-OPGIYKPFIIGVSLMAFQQLGSVNAVMFYAETIFEEAKF- 237 IGAEQSFHLALLR-OPGIYKPFIIGVSLMAFQQLGSVNAVMFYAETIFEEAKF- 237 IGAEQSFHLALLR-0PGIYKPFIIGVSLMAFQQLGSVNAVMFYAETIFEEAKF- 2</pre>	Db 232 NEIRESLKLKOGGWALFKANRNVFRAVFLGWLLGAMOOFTGNNIIMYYAPRIFKMAGFTT 291 QY 289 - KDSSLASVVVGVIOVLFTAVAALIMDRAGRRLLLVLSGVUNVFSTSAFGAYFKLTQGGP 347 : : ::::  ::   : : : : : : : : : : : :		C:Species: Klebsiella oxytoca C;Date: 13-Jan-1995 #sequence_revision 13-Jan-1995 #text_change 24-Sep-1999 C;Accession: S47089 R;Shatwell, K.P.; Charalambous, B.M.; McDonald, T.P.; Henderson, P.J.F. submitted to the EMBL Data Library, June 1994 A;Beference number: S47089 A;Reference number: S47089	A,scatus: preliminary A,Molecule type: DNA A,Residues: 1-472 <sha> A,Cross-references: EMBL:X79598; NID:g498919; PIDN:CAA56110.1; PID:g498920 C,Shperfanily: glucose transport protein C,Revwords: arabinose transport protein</sha>

Tue Sep 28 09:09:40 2004

us-09-886-954a-1.rpr

recording to the strain K-12, substrain MG1655	0.1; PID:91789207;	9 TOPLIGPPGGSARRGRYFLAAFAALGFLSFGFALGYSSPAIPSLORAAPPAPRLDDAA 68 1: 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C;Genetics: A;Gene: araE A;Map position: 61 min C;Superfamily: glucose transport protein C;Keywords: arabinose transport; intramolecular oxidoreductase; isomerase;	QY Db ase; membrane prot	<ul> <li>69 ASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRL 128</li> <li>1 : :      : :      : :     </li> <li>5 WVVSSNMLGAAIGALFNGMLSFRLGRKYSLMAGAILFVLGSIGSAFATSVEMLIAARV 120</li> <li>129 LTGLACGVASLVAPVYISFTAVPAVEGILGSCV01MNVVGTLIAVLAGVLFWDMLAV 1 * 0</li> </ul>
ccore 603; DB 2; Length 472; red. No. 4.1e-37; Mismatches 197; Indels	, , , , , , , ,	:  ;    ;       ;  :   ;   ;   ;   ;   ;
σ ,	DDAA 68 Db	
DD 6 TESALTPRSLRDTRRNNNFVSV-AAAVAGLLFGLDIGVIAGALFFITDHFVLTSRLQE QY 69 ASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRL	2E 62 QY 5GRL 128 Db	245 LALLR-OPGIYKPFIIGVSLMAFOOLSGVNAVMFYAETIFBEAKFKDSSLAS 295       : : : : : : : : : : : : : : : : :
Db 63WUSSMMLGAAIGALFNGWLSFRLGFKYSLMAGAILFVLGSIGSAFATSVEMLIAARV	120	VVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVVVVVFSTSAFGAYFKLTQGGPGNSSHVAI
QY     129     LTGLACGVASLVAPVYISEIAYPAVRGLIGSCVQLMVVGILLAYLAGWVLEWRWLAV       Db     131     111     111     111     111       Db     131     131     111     111     111     111	186	
187	RAM 180 QY	356 SAPVSAQPVDASVGLAWLAVGS%CLFIAGFAVG%GPIPWLLMSEIFPLHVKGVATGICVL 415      :   :   :   :   :   :   :   : 353ASSGLSWLSVGMTMMCIAGYAMSAAPVWILLCSEIQPLKCRDFGITCSTT 402
Db 181 LGVLALPAVLITILVVFLPNSPRWLAEKGRHIEAEEVLRMLRDTSEKAREELNEIRESLK	SLK 240 OY	416 THWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQI 470
QY     245     LALLR-OPGIYKPFIIGVSLMAPQOLSGVNAVMFYAETIFEEAKFKDSSLAS       Q     1     :     :       D     241     LKQGGWALFKINRUVRRAVFLGMLLLQAMQOFTGMNIIMYYAPRIFKMAGFTTTEQOMIAT	SLAS 295 Db : : 11AT 300	403 TNWVSNMIIGATFLTLLDSIGAGTFWLYTALNIAFVGITFWLIPETKNVTLEHI 457
296	355 BB	somerase (RC 5 3 1 4) - Recherichia colli (etrain Olf7.87
301	352 G;	Derichia (J. V.)) Bechelicula (J.) (Suball (J.). SUBSLAIN D-2001 #sequence revision 16-Feb-2001 #text change 31-Dec-2001
Db 353ASSGLSWLSVGARMCLEIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVL 	415 402	E85936E85936E85936E85936E85936E. Pulunkett III, G.; Burland, V.; Mau, B.; Glasner, E.; Stotbeck, E.J.; Davis, N.W.; Lim, A.; Dimalanta, E.;
QY     416     TNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVDETKGKTLEQ1       4     403     TNWVSNMIIGATFLTLDSIGAGGTFWLYTALNIAFVGITFWLIPETKGNTLEH1	470 470 Astr 457 457 457	20-533, 2001 sequence of enterohemorrhagic Escherichia coli O157:H7. mber: A85480; MUID:21074935; PMID:11206551 85936
SULT 7 1091		caus: preriminary olecule type: DNA ssidues: 1-472 <sto> DSSS-references: GR:ARON5174. NTD.c12517331. DTDN.ab.c57963 1. Comp. Awon146. There. of</sto>
arabinose isomerase (EC 5.3.1.4) - Escherichia coli (strain 0157:H7, Species: Escherichia coli Date: 18-Jul-2001 #sequence_revision 18-Jul-2001 #text_change 31-Dec-	RIMD 05 A	0157:H7, substrain EDL933
Accession: Byloyi Hayashi, T.; Makino, K.; Ohnishi, M.; Kurokawa, K.; Ishii, K.; Yokoya Sawasra, N.; Yasunaga, T.; Kuhara, S.; Shiba, T.; Hattori, M.; Shinaga 3. Bos a, 11.20	п, с.G.	ort j idore
Title: Complete genome sequence of enterohemorrhagic Escherichia coli Title: Complete genome sequence of enterohemorrhagic Escherichia coli Accession: B91091 Accession: B91091	nd gend	Query Match 24.5%; Score 603; DB 2; Length 472; Best Local Similarity 33.3%; Pred. No. 4.1e-37; Matches 158; Conservative 84; Mismatches 197; Indels 36; Gaps 9;
A;Status: preliminary A;Molecule type: DNA A;Residues: 1-472 <hay> A;Residues: 1-472 <hay> A;Cross-references: GB:BA000007; PIDN:BAB37121.1; PID:91363170; GSPDB:GN00154 A;Experimental source: strain O157:H7, substrain RIMD 050952</hay></hay>	CY GSPDB:GN00154	9 TQPLLGPPGGSAPRGRRVFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAA 68  :
Genetics; Gene: ECs3698 Superfamily: glucose transport protein Keywords: intramolecular oxidoreductase; isomerase		

^

Tue Sep 28 09:09:40 2004

`.,

i,

.

<ul> <li>a. Crons Martin Menterper Further Mender Sectores and Sectore Mark Martin Sectores and Martin</li></ul>	betkgktleQITAH-Fegr 477     : :   : :   betkhvslehiernlmkgr 455	- Escherichia coli (st 03-Aug-2001	Ishii, K.; Yokoyama, K.; Han, C.G. :tori, M.; Shinagawa, H. : Escherichia coli O157:H7 and gend 96	g13363291; GSPDB:GN00154 0509952	Length 464; Indels 65; Gaps 11;	DAAASWFGAVVTLGAAAGGVL 86   : :       5HTQEWVVSSMMFGAAVGAVG 71	BRLITGLACGVASLVAPVYIS 146  :               :   :VLLGLAVGVASYTAPLYLS 131	WHLAVLGCVPPSLMLLINCFM 202   : : :    : ::   RMMLGVIIIPAILLLIGVFFL 191	-RFLWGSEQGWEDPPIGAEQSFH 244   :    RESLQVKQSGW239	FEAKFKDSSLASVVVGV 300			4 4		d] - Escherichia coli (strain 0157 ext_change 14-Sep-2001	Glasner, J.D.; Rose, D.J.; Mayhev
<pre>JurcemerrerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderLingenergeAnderFinder LingerLingenergeAnderFinder LingerLingenergeAnderFinder LingerLingerLingenergeAnderFinder LingerLingerLingenergeAnderFinder LingerLingerLingenergeAnderFinder LingerLingerLingenergeAnderFinder LingerLingerLingenergeAnderFinder LingerLingerLingenergeAnderFinder LingerLingerLingerLingerLingerLingerLingerLingen LingerLingerLingerLingerLingerLingerLingerLingerLingerLinger LingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLingerLi</pre>	*LVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVP.       :::     :     :	1 symport of transport system ECs3819 [ srichia coli 2001 #sequence_revision 18-Jul-2001 #te: 106	Makino, K.; Ohnishi, M.; Kurokawa, K.; asunaga, T.; Kuhara, S.; Shiba, T.; Hat 22, 2001 .e genome sequence of enterohemorrhagic .per: A99629; MUID:21156231; PMID:112587; 106	ninary : DNA 4 «LAY> 266 (BB:BA000007; PIDN:BAB37242.1; PID: 268: GB:BA000007; PIDN:BAB37242.1; PID: 260 scie: strain O157:H7, substrain RIMD 50 urces transport protein	23.9%; 32.2%; vative 83	LAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDD 	GWLVDRAGRKLSLLLCSVPFVAGFAVITAAODVWMLLGG     :        : ::      : : :  : 3WLSFKLGRKKSLMIGAILFVAGSLFSAAADVVEVLLLS.	IAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLEWR    :    :       : :     ADEKIRGSMISMYQLMITIGILGAYLSDTAFSYTGAWR	ETPRFLLTCHRROEAMAALRF :  : SSPRWFAAKRFVDAERVLLRLRDTSAEAKRELDEIRES	ALLRQPGIYKPFI-IGVSLMAFQQLSGVNAVMFYAETIF    :: :: :: :     : :  :  :    ALFRENSNBPAUFLGVLJVVNOFTGMAVIWYVAERTF	OULFTAVAALIMDRAGRELLLULSGVVMVFSTSAFGAYF 1	OPVDASVGLAMLAVGSMCLFIAGFAVGWGPIPWLLMSEI         OPVDASVGLAMLAVGSMCLFIAGFAVGWGPIPWLLMSEI	LVTKEFSS :    : :/   :	א ל הערד דרוד די זרו אנדוסאיד א אי זי אדאווסר דוורווניד די זי דרסא דע	n symport of transport system [imported erichia coli 2001 #sequence_revision 16-Feb-2001 #te	5951 Plunkett III, G.; Burland, V.; Mau, B.; Porter T.: Davis N W . Tim & . Dimal
<pre>19' 1dCVPFSIAMLIACEMPETERELITGUEREDEMAALIFETMASECGAREDEFICADOSE 10' 1.10'</pre>	4 0 D D D D	300 355 352	415 402	K-12)	Riley, M.; Cd	OY 27 Db 16	PID:91789312; QY 87 DD 72	147 132	QY 203 Db 192	86 QY 245 71 Dh 240	146 22 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	202 202 201 201 201 201 201 201 201 201	244 24 24 24 24 239 239 239 240	300 DD 236 298 RESULT 11	360 346	420
<pre>187 LGCVPPSLMLLLMCFMPETPR 181 LGVLALPAVLLTILVVFLPNSPR 245 LALLR-OPGIYKPFIGW 245 LALLR-OPGIYKPFIGW 241 LKQGGMALFKINRNVRRAVFLGM 296 VVUGUTFMPATFIAVFTVDRAGR 356 SAPVSAQPVDASVGLAMLAVGSW 356 SAPVSAQPVDASVGLAMLAVGSW 356 SAPVSAQPVDASVGLAMLAVGSW 357 SAPVSAQPVDASVGLAMLAVGSW 358 SAPVSAQPVDASVGLAMLAVGSW 359 SAPVSAQPVDASVGLAMLAVGSW 350 LVVGLTFMPATFIAVFTVDRAGR 350 LVVGLTFMPATFIAVFTVDRAGR 351 LVVGLTFMPATFIAVFTVDRAGR 352 SAPVSAQPVDASVGLAMLAVGSW 353 SAPVSAQPVDASVGLAMLAVGSW 354 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMLAVGSW 355 SAPVSAQPVDASVGLAMVAVGLAG 355 SAPVSAQPVDASVGLAGVSSR 355 SAPVSAQPVDASVGLAGVSSR 355 SAPVSAQPVDASVGLAGSSSS 355 SAPVSAQPVDASVGLAGSSSS 355 SAPVSAQPVDASVGLAGSSSS 355 SAPVSAQPVDASSCLAUGSSSR 355 SAPVSAQPVDASSCLAUSTIGALLFCLUCUVDAV 351 L11 (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]</pre>	FLLTQHERQEAMAALRFLWGSEQGWEDPPIGAEQSFH = :   :       : : : : : : : : : : : : :	LİQAMQÖFTGANI I MYYAPRI FKMAGFTTTEQQMIAT RLLULSGVVMVFSTSAFGAYFKLTGGGPGNSSHVAI : : : : : : : : : : : : : : : : : : :	CLFIAGFAVGWGFIPWLLMSEIFPLHVKGVATGICVL : [  ; :: ]:             : 1: ]: ]: ]: ]: ]: ]: ]: ]: ]: ]: ]: ]: ]:	GTRWLYTÁLNIAFVGITFWLIPÉTKNVTLEHÍ 457 cansporter) - Escherichia coli (strai 17-Sep-1997 #text change 01-Mar-200	- N.T.; Burland,	li K-12. translation not	00096; NID:g2367178; PIDN:AAC75980.1; ubstrain MG1655	ein	Length 464; Indels 65;	AIPSLQRAAPPAPRLDDAAASWFGAVVTLGAAAGGVI  :  :: :       ALPFIADEFQITSHTQEWVVSSMFGAAVGAVG	GFAVITAAQDVWMLLGGRLLFGLACGVASLVAPVYIS      :  :  :                       GSLPSAAAPNVEVLLLSRVLLGLAVGVASYTAPLYLS	LLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCF         : : :     : :   LGAYLSDTAFSYTGAWRWNLGVIIIPAILLLIGVFFI	RFLMGSEQGHEDPPIGAEQSF   :    RDTSAEAKRELDEIRESLQVKQSGW	QQLSGVNAVMFYAETIFEEAKFKDSSLASVVVG    : :  : :     : ::: QQFTGMNVIMYYAPKIFELAGYTNTFEQMMGTVIVGI	T.SGVUMVFSTSAFGAYFKLTQGGPGNSSHVAISAPV   :           :        :    'LGFLVMAGULGTMMHIGIHSP-5	AQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLM
	<pre>187 LGCVPPSLMLLLMCFMPETPRF 187 LG-LCVPSLMLLLLMCFMPETPRF 181 LGVLALPAVLLIILUVFLPNSPRW 245 LALLR-QPGIYKPFIIGVS 245 LALLR-QPGIYKPFIIGVS</pre>			403 TNWVSNMIIGATFLTLLDSIGAAG SULT 9 5079 Lactose-proton symport (galactose tr Species: Escherichia coli Date: 12-Sep-1997 #sequence revision	ccession: F65079 lattner, F.R.; Plunkett III, G.; Bl . Rose, D.J.; Mau, B.; Shao, Y. .nce 277, 1453-1465, 1997	itle: The complete genome sequence deference unuber: A64720; MUID:97426 cession: F65079 catus: preliminary; nucleic acid se	olecule type: UNA seidues: 1-464 «BLAT» coss-references: OB:AE000377; GB:UC kperimental source: strain K-12, su	glucose transport	24.1%; iilarity 32.4%; Conservative (							361 AQPVDASVGLAWLAVGSMCLFIAG

us-09-886-954a-1.rpr

A;Reference numeric A;Accession: F8551 A;Accession: F8551 A;Accession: F8551 A;Accession: F8551 A;Accession: Frediminary A;Accession Erve A;Residues: 1-464 <STO5 A;Residues: probable sugar transporter protein ERD6 [imported] - Arabidopsis thaliana CiSpecies: Arabidopsis thaliana (mouse-ear cress) CiSpecies: Arabidopsis thaliana (mouse-ear cress) Cipate: 20-Oct-2000 #sequence_revision 20-Oct-2000 #text_change 03-Nov-2000 CiAccession: T52132 Riction: T52132 Riction: Biophys. Acta 1370, 187-191, 1998 Airtile: ERD6, a CDNA clone for an early dehydration-induced gene of Arabidopsis, encode Airtice number: 225973; MUID:98213606; PMID:9545564 87 GGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLACGVASLVAPVYIS 146 72 SGWLSFKLGRKKSLMIGAILFVAGSLFSAAAPNVEVLILSRVLLGLAVGVASYTAPLYLS 131 147 EIAYPAVRGLLGSCVQLMVVVGILLAYLA----GWVLEWRWLAVLGCVPPSLMLLLMCFM 202 245 LALLRQPGIYKPFI-IGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSS----LASVVVGV 300 240 -ALFKENSNFRRAVFLGVLLQVMQQFTGMNVIMYXAPKIFELAGYTNTTEQMMGTVIVGL 298 301 IQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAPVS 360 299 INVLATFIAIGLVDRWGRKFPLTLGFLVM-----AGG-----MGVLGTMMHIGHSP-S 346 361 AOPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLM 420 

 132
 EIAPEKIRGSMISMYQIMITIGILGAYLSDTAPSYTGAWRWMLGVIIIPAILLLIGVFFL
 191

 ---- 239 ------RFLWGSEQGWEDPPIGAEQSFH 244 347 AQ------YFAIAMLLMFIVGFAMSAGPLIWVLCSBIQPLKGRDFGITCSTATNWIA 397 FLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAAASWFGAVVTLGAAAGGVL 86 71 421 AFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQITAH-FEGR 477 398 NMIVGATFLTMLNTLGNANTFWVYAGLNVLFILLTLWLVPETKHVSLEHIERNLMKGR 455 16 FFVCFLAALAGLLFGLDIGVIAGALPFIADEF----QITSHTQEWVVSSMMFGAAVGAVG A;Title: Genome sequence of enterohemorrhagic Escherichia coli 0157:H7. A;Reference number: A85480; MUID:21074935; PMID:11206551 75; Length 496; PDSPRWFAAKRRFVDAERVLLRLRDTSAEAKRELDEIRESLQVKQSGW--Indels Query Match 23.8%; Score 584.5; DB 2; Best Local Similarity 33.5%; Pred. No. 1e-35; Matches 160; Conservative 73; Mismatches 169; A,Gene: ERD6 C;Superfamily: glucose transport protein C;Keywords: transmembrane protein; transport protein A;Accession: T52132 A;Status: preliminary; translated from GB/EMBL/DDBJ A;Molecule type: mRNA A;Residues: 1-496 <KIY> A;Cross-references: EMBL:D89051; PIDN:BAA25989.1 203 PETPRFLLTQHRRQEAMAAL-----192 27 Genetics RESULT 12 T52132  $\mathcal{S}$ qq S q ą  $\Sigma$ đ  $\partial$ đ  $\delta$ đ q  $\delta$  $\mathcal{S}$  $\mathcal{S}$ g

11;

Gaps

δ	26	VFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAAASWFGAVVTLGAAAGGV 85
qu	58	VFLSTFVAVSGSFCTGCGVGFSSGAQAGITKDLSLSVAEYSMFGSILTLGGLIGAV 113
ð i	86	14
	7 T T	I 17.
70 f	146	0 (
20 0	1.4	n n n
6 6	234	FILDTIDMTENGGETKMSELFOR 28
Q	252	MFYAETIFEEAKFKDSSLASVVVGVIQVLFTAVAAL 31
qa	289	
δλ	312	RAGRRLLLVLSGVVMVFSTSAFGAYF1
qu	348	:: :       :           :   388 LVDKMGRRTLLMASCSAMGLSALLLESVSYGPQSFGLLPELT 388
QY	363	PVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLMAF 422
qu	389	: : : :        : PIFTCIGVLGHIVSFAMGMGGLPWIIMAEIFPMNVKVSAGTLVTVTNWLFGW 440
QY	423	VLRPYGAF
qu	441	ITTYTFNFMLEWNASGMFLIFSMVSASSIVFIYFLVPETKGRLEEIQA 489
RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RESULT RE	SSULT 13 43400 (0-inositol transp (pate: 2-dan-2000 (pate: 2-dan-2000 (pate: 2-dan-2000 (Accession: T43400 (Accession: T43400 (Accession: T43400 (Accession: T43400 (Accession: T43400 (Cross-references: (Accession: T43400 (Cross-references: (Cross-references: (Cross-references: (Cross-references: (Cross-references: (Cross-references: (Berences: 290-575 (Cross-references: (Experimental sour (Genetics: SPDB: (Gene: itrl) SPDB: (Ge	orter - fission yeast (Schizosa ccharomyces pombe ) #sequence_revision 21-Jan-2000 ); T33079
Mato	147	nservative 90; Mismatches 201; Indels 55; Gap
QY 2	ы S	SAPRGRRVFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRL 64
qq ,	<u>،</u> و	
රු පි	65 I 125 J	DDAASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLCSVFFVAGFAVITAAQDVWMLL 124 1

Tue Sep 28 09:09:40 2004         us-09-886-95           Qy         125 GGRLIFGLACGVASEVARVYISEIAYPAVRGLIGSCVOLMVVGILLAYLAGWVLE 180           Db         185 VGRFUFGQVASEVARVYISEIAYPAVRGLIGSCVOLMVVGILLAYLAGWVLE 180           Qy         124   :  :  :  :  :              Db         185 VGRFUFGQVGIASLIPEVILSEIAPSKIRGRUNITVULITAGQVIAYGIDTAFEHVHN 244           Qy         181 -www.avLGCVPPSLMLLLMCFMFETRFLITQHRROFAMALRELMGS 228	54a-l.rpr       Page 7         Db       240 -ALFKENSNFRRAVFLGILLQVMQQFTGMNVIMYYAPKIFELAGYTNTTEQMMGTVIVGL 298         Qy       301 IQULFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGGANSSHVAISAPVS 360         Db       290 TUVLATTATATATATATATATATATATATATATATATATATA
Db 245 GWRWYDZAFQLFILIWLPESPRLUYKERSQEAYNTLARIYFAHPYEIKTKLY 304 QY 229EQGWEDPPIGAEQSFHLALRQPGIYKPFIIGVSUMAPQCUSGVNAVMFYAET 281 Db 305 LIGEGVDPFSGSRWKTYFT-EXFYNPRALLACGQAMQQLSGFNSLMYFSST 363	361 AQPUDASVGLAMLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLM 361 AQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVLTNWLM 1  : ::::::::::::::::::::::::::::::::::
282 IFEBAKFKDSSLASVVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAY 3        : :  :    : :  :   :   :  : 364 IFEVVGFNNPTATCLLIAATNPVFTIVAFGVIBFFGRRLLLLTVWGMIAALIVCAVAFH 4	QY 421 AFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCYPETKGKTLEQITAH-FEGR 477 1
QY 340 FKLTQGGPGNSSHVAISAPVSAQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLM 397 	RESULT 15 G84864 probable membrane transporter [imported] - Arabidopsis thaliana
QY       398       SELFPLHVKGVATGICVLTNNLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLF       457         QY       (1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	Cispectus Atalucopus charada (mouse-eat cress) Cipate: 02-Pb-2001 #sequence_revision 02-Feb-2001 #text_change 16-Feb-2001 CiAccession: 684864 Rylin, X.; Kaul, S.; Rounsley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.; Fujii, C.Y.;
QY 458 CVPETKGKTLEQI 470    :  : :  Db 528 CYPDLTDYTIEEI 540	M.; KOO, H.; MOLTAC, K.S.; CTONIN, L.A.; SNEN, M.; VANAKEN, S.E.; UMAYAM, L.; JALLON, L EUSS, D.; Nierman, W.C.; White, O.; Eisen, J.A.; Salzberg, S.L.; Fraser, C.M.; Venter, A Nature 402, 761-768, 1999 A;Title: Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. A;Reference number: A84420; MUID:2008487; PMID:10617197
RESULT 14	A,Accession: G84864 A.Status: preliminary A.McTervie TND: D. D.
<pre>see-proton symport (galactose transporter) STY3244 [imported] - Salmonella enterid es: Salmonella enterica subsp. enterica serovar Typhi this speciaes has also been called Salmonella typhi : 09-Nov-2001 #sequence revision 09-Nov-2001 #text change 18-Nov-2002</pre>	A;ROLECULE CYPER A;Residues: 1-521 <sto> A;Crossreferences: GB:AE002093; NID:g2289003; PIDN:AAB64332.1; GSPDB:GN00139 C;Genetics: A;Genet:Ar2943330</sto>
Wain, J.; Churcher,	A;Map position: 2 C;Superfamily: glucose transport protein
LIGHLH, A.; DAVIS, F.; DAVIES, K.M.; DOWU, D.; MILLE Ta, P. Duail, M.; Rutherford, K.; Simmonds, M.; Skelton, J.;	Query Match 23.7%; Score 582; DB 2; Length 521; Best Local Similarity 31.0%; Pred. No. 1.6e-35; Matches 147; Conservative 76; Mismatches 191; Indels 60; Gaps 9;
ne sequence of a multiple drug resistant Salmonella 0502; MUID:21534947; PMID:11677608	QY     33     AALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAAASWFGAVVTLGAA     81       Dh     31           :     :     : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : :   : : :   : : :   : : :   : : :   : : :   : : :   : : : :   : : : :   : : : : :   : : : : : : : : : : : : : : : : : : : :
A;Molecule type: DNA A;Molecule type: DNA A;Residues: 1-464 <par> A;Cross-references: GB:AL513382; PIDN:CAD02915.1; PID:g16504168; GSPDB:GN00176 C.Generics:</par>	98 IGAAAGWINYGRKKISLLLCSVPFVAGFAVITAAODVWNLLGGFLLTGLAGGVASLVA 98 IGAAAGWINYGRKKISLLLCSVPFVAGFAVITAAODVWNLLGGFLLTGLAGGVASVASVA
A.Genee: STY3244 C.Superfamily: glucose transport protein	142 PVTSELAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLEWRMLAVLGCVPPSLML
Query Match 23.7%; Score 583.5; DB 2; Length 464; Best Local Similarity 31.6%; Pred. No. 1.1e-35; Marches 151; Conservative 84; Mismarches 178; Indels 65; Gans 10;	Db 158 PVYIAEASPSEVRGGLVSTNVLMITGGQFLSYLVNSAFTQVPGTMRWMLGVSGVPAVIQF 217 OV 197 LLMCFMPETDRFLLTOHRROEAMAALRFLMGSGOGWEDPPIGAEO 241
27 FLAAFAAALGPLSFGFALGYSSPATPSLQRAAPPAPRLDDAAASWFGAVVTLGAAAGGVL 8	:               :  :  :  :  :  :  :  :
Db 16 FFVCFLAALAGLDFGLDIGVIAGALPFITDEFQITAHTQEWVVSSMMFGAAVGAVG 71	QY 242 SFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVV 298
QY B7 GGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRLLTGLAGGVASLVAPVYIS 146     :       :::::     DD 72 SGWLSFKLGRKKSIMIGALLFVASSLFSAAAPNVEVLIISRVLGLAGVAVASYTAPLYLS 131	Db 275YLDVFRSKELRLAFLAGAGLQAFQQFTGINTVMYYSPTIVQMAGFHSNQLALFLSELIV 332 OV 299 GVIOVLFTAVAALIMDRAGRRLELVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAISAP 358
147 EIAYPAVRGLLGSCVQLMVVVGILLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFM	333
Db 132 BIAPEKIRGSMISMYQLMITIGILGAYLSDTAFSYSGAWRWMLGVIIIPAILLLIGVFFL 191	
203 PETPRELLTQHRRQEAMAALRELWGSEQGWEDPPIGAEQSFH  ::  : :   :	374 FFKÓSETSSDGGLYGWLÅVLGLALYIVFFÅPGMGPVPWTVNSEIYPQQYRGICGGMS
Db 192 PDSPRWFAAKRFHDAERVLLRLRDTSAEAKRELDEIRESLQVKQSGW 239 Qy 245 LALLRQPGIYKPFI-IGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGV 300	QY     417 NWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQ1 470         :     :        1:     :       134     NWISNLIVAQFFLTIAEAAGTGMTFLILAGIAVLAVIFVPETQGLFFSEV 487

Search completed: September 27, 2004, 19:30:11 Job time : 51 secs

Tue Sep 28 09:09:41 2004

,

Ξ

ā

: .

us-09-886-954a-1.rsp

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ູ້ຜູ່	DT 28-FEB DT 28-FEB DT 28-FEB DT 28-FEB		OC Mammal OX MCBI T RN [1] RP SEQUEN RC TISSUE		RN [2] RA [2] RA [2] RIL 3 RU 3 RU 3 RU 3 RU 4 RU 3 RU 4 RU 4 RU 4 RU 4 RU 4 RU 4 RU 4 RU 4
n 5.1.6 Compugen Ltd. ; Search time 25 Seconds (without alignments) 993.499 Million cell updates/sec	CVPETKGKTLEQITAHFEGR 477	141681			by chance to have a he result being printed, distribution.	Description	Q9ny64 homo sapien Q9jf21 rattus norv 09jf23 mus musculu P88354 bos taurus Q9ugq3 homo sapien P46333 bacillus su P4633 bacillus su P00880 escherichia P00880 escherichia P10286 schirosacch P10286 schirosacch P10286 schirosacch P11169 homo sapien P12037 mus musculu P12038 artus norv P11169 homo sapien P12038 artus norv P12358 chlorella k P14246 mus musculu P12358 arabidopsis P13525 rattus norv P13525 chlorella k P14572 homo sapien P13525 rattus norv P13525 chlorella k P13525 rattus norv P13558 arabidopsis P13558 arabidopsis P13558 chlorella k P13568 chlorella k P13568 chlorella k P13568 chlorella k P13568 chlorella k P13568 gallus gall
GenCore versio (c) 1993 - 2004 h, using sw model 27, 2004, 19:09:2 954A-1	:TQPLLGPPGGSA	l seqs, 52070155 residues satisfying chosen parameters:	0 2000000000	imum Match 0% imum Match 100% ting first 45 summaries	SwissProt_42:* No. is the number of results predicted by chance to have greater than or equal to the score of the result being pi derived by analysis of the total score distribution.	SUMMARIES Length DB ID	477       1       GTR8_HUMAN         477       1       GTR8_HUMAN         477       1       GTR8_HOVIN         507       1       GTR8_HUMAN         507       1       GTR8_HUMAN         507       1       GTR8_HUMAN         471       1       GTR8_HUMAN         507       1       GTR8_HUMAN         461       1       GTR8_EACU         472       1       GTR8_EACU         472       1       GTR8_EACU         472       1       GTR8_ECOLI         473       1       GTR3_EAUNAN         494       1       GTR3_EOUNIN         494       1       GTR3_BOUNN         495       1       GTR3_MOUSE         494       1       GTR3_MOUSE         495       1       GTR3_MOUSE         504       1       MOUSE         523       1       GTR2_MOUSE         523       1       GTR3_MOUSE         523       1       GTR3_MOUSE         523       1       GTR3_MOUSE         523       1       GTR3_MOUSE         523       1       GTR4_HUMAN
Cop ein - protein Septe US-09	: score: 24 ce: 1 g table: BL Ga	Searched: 141681 Total number of hits s	eq length eq length	Post-processing: Minimum Maximum Listing	Database : SwissProt. Pred. No. is the num score greater than o and is derived by an	k Result Query No. Score Match	99 99 99 99 99 90 90 90 90 90 90 90 90 9

P17809 mus musculu P30605 saccharomyc P27674 bos taurus P11166 homo sapien P11166 homo sapien P11168 homo sapien P46896 gallus gall P813155 oryctolagus P13355 oryctolagus P21996 zymomnas m Q9X522 gallus gall	SE	<pre>2.1 INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER: INDER:</pre>	
MOUSE YEAST BOVIN HUMAN HUMAN CHICK CHICK RABIT RABIT RABIT RABIT RABIT RABIT RABIT CHICK	ALIGNMENT	<pre>47 47 47 47 47 47 47 47 47 47 47 47 47 4</pre>	
GTR1 MOUSE ITR1_YEAST GTR1_BOVIN GTR1_BOVIN GTR1_HUMAN GTR1_RUT GTR2_HUMAN GTR2_CHICK ITR2_SCHPO GTR1_RABIT GTR3_RABIT GTR3_RABIT GTR3_RABIT GTR3_CHICK GTR2_CHICK	AL	00HU RO REES VEDHONDYAR ACERUSOUE PUP 2 01 1	I
~~~		<pre>DARD; DARD; L, Created) L, Last sec Ly 2. Last sec Div type 8) (</pre>	
88888888899996968 88888889999688 88888888		te C2000-1000 te martine 10, 000	(
ਚਾ 10 ਵਾਵਾਬਾਹਾ ਵਾ 10 ਵਾ ਦਾ ਵਾ 10		<pre>N STANDARD; 9NSC4: STANDARD; 9NSC4: 41, Last sec 03 (Rel. 41, Last sec 04 (Buth) 2, facil rtransporter type 04 10 (2000) 10 (2000)</pre>	
220.58 20.39 20.30 20.30		<pre>N STAND) N STAND) N STAND) N STAND) N STAND) N STAND) N STAND N STAND) N STAND N STANDN N /pre>	
34 520.5 35 515.5 36 515.5 37 514.5 38 515.5 38 513.5 40 512.5 41 510.5 44 499.5 45 499.5		RESULT 1 GTR8 HUMAN STANDARD; PRT GTR8 HUMAN STANDARD; PRT 28-FEB-2003 (Rel. 41, Last sequencia DE Solute carrier family 2, facilital Solute carrier family 2, facilital GGI HOGSE transporter type 8) (Glu GGI HOGSE transporter type 8) (Glu GGI HOGSE transporter type 8) (Glu SLC2A8 OR GLUT8 OR GLUTY1. 8) (Glu GGI HOGSE transporter type 8) (Glu GGI HOGSE transporter type 8) (Glu SLC2A8 OR GLUT8 OR GLUTY1. 8) (Glucose transport activity."; NNET TSUE=TSETIS; Primates; Cati NNET TSUE=TSETIS; Primates; Cati Cati NNET TSUE=TSETIS; Primates; Cati NNET TSUE=TSETIS; Primates; Cati NTESUE=TSETIS; Primates; Primates; Cati NTESUE=TSETIS; PRIMIA; PRIMIA; PRIMIA; CCC FILUTA; A novel mammalian glucos; CCC FILUTA; TRUNII-TSEUDAGE NTESUES SPECIFICITY; HIGHIY exc NTESUES SPECI	
		PARTA CONSCIONATION CONSCIENT CONSCIENCE CON	

_
004
0
0
2
41
4
••
σ
ο
<u></u>
σ
ö
-
m
8
28
2
2
2
Sep 28
Sep 2
Sep 2
Sep 2
2

us-09-886-954a-1.rsp

Db 301 IUULFTAVALIMDRAGRRLLLULSGVWNFSTSAFGAYFKLTQGGFGNSSHVAISAPVS 360 20 361 AQPUASVGLAWLAVGSMCLFLAGFAVGWGP1PWLLMSE1FPLHVKGVATGICVLTNWLM 420 20 361 AQPUASVGLAWLAVGSMCLFLAGFAVGWGP1PWLLMSE1FPLHVKGVATGICVLTNWLM 420 20 361 AQPUASVGLAWLAVGSMCLFLAGFAVGWGP1PWLLMSE1FPLHVKGVATGICVLTNWLM 420 21 AQPUDASVGLAWLAVGSMCLF1AGFAVGWGP1PWLLMSE1FPLHVKGVATGICVLTNWLM 420 20 421 AFLVTKEFSSLMEVLRPYGAFWLASAFC1FSVLFTLFCVPETKGKTLEQITAHFEGR 477 20 421 AFLVTKEFSSLMEVLRPYGAFWLASAFC1FSVLFTFSCVPETKGKTLEQITAHFEGR 477 21 AFLVTKEFSSLMEVLRPYGAFWLASAFC1FSVLFTFSCVPETKGKTLEQITAHFEGR 477	<pre>FTRE PAR TO GTRE PAR G GTRE PAR G GTRE PAR G GTRE PAR D /pre>	CC This SWISS-PROT entry is copyright. It is produced through a collaboration CC between the Swiss Institute of Bioinformatics and the EMBL outstation - CC the European Bioinformatics Institute. There are no restrictions on its CC use by non-profit institutions as long as its content is in no way CC modified and this statement is not removed. Usage by and for commercial CC entities requires a license agreement (see http://www.isb-sib.ch/announce/ CC r send an email to license@isb-sib.ch).	
GO; GO; GO; O GO; GO; O GO; GO; O GO; GO; O GO; GO; O InterPro InterPro InterPro InterPro Fam; PF PRINTS; PRINTS; PROSITE;	 Milisjans fandy, male of the second state of the seco	QY 181 WRMLAVLGCVPPSLMLLMCFMPBTPRFLLTQHRQEAMALRFLMGSEQGWEDPPIGAE 240 Db 181 WRMLAVLGCVPPSLMLLLMCFMPBTPRFLLTQHRQEAMAALRFLMGSEQGWEDPPIGAE 240 Db 181 WRMLAVLGCVPPSLMLLLMCFMPBTPRFLLTQHRQEAMAALRFLMGSEQGWEDPPIGAE 240 Db 181 WRMLAVLGCVPPSLMLLLMCFMPBTPRFLLTQHRQEAMAALRFLMGSEQGWEDPPIGAE 240 QY 241 QSFHLALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFVAETIFEEAKFKDSSLASVVGV 300 Db 241 QSFHLALLRQPGIYKFFIIGVSLMAFQQLSGVNAVMFVAETIFEEAKFKDSSLASVVGV 300 Db 241 QSFHLALLRQPGIYKFFIIGVSLMAFQQLSGVNAVMFVAETIFEEAKFKDSSLASVVVGV 300 Db 241 QSFHLALLRQPGIYKFFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGV 300 Db 241 QSFHLALLRQPGIYKFFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGV 300 0y 301 IOVLFFTAVAALIMDRAGRELLLULGSSLASFYMFFIEGAKFFFAKFFFOGGPSNSSHVATAFFFEAKFFFOGGPSNSSHVATAFFFAKFFFOGGPSNSSHVATAFFFFAKFFFOGFSNCGFFFAKFFFFF	TOF

-

Tue Sep 28 09:09:41 2004

.

us-09-886-954a-1.rsp

Ś	
e	
ä	

Qy 360 SAQPUDASVGLAWLAVGSMCLFTAGFAVGWGPTPWLLMSETFPLHVKGVATGICVLTNWL 419 Db 1 : : 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre></pre>	CC prepubertal testis. Lower levels of expression in brain, liver, CC heart, Kidney, fat and skeletal muscle. CC -!- DEVELOPMENTAL STAGE: High expression in blastocysts. CC -!- INDUCTION: Inhibited under glucose deprivation. CC -!- SIMILARITY: BELONGS TO THE SUGAR TRANSPORTER FAMILY. GLUCOSE CC -!- TRANSPORTERS SUBFAMILY.
InterPro; IPR00711 InterPro; IPR00582 InterPro; IPR00588 InterPro; IPR00368 Pfam; PF00083; sug Pfam; PF00083; sug TIGRFAMS; TIGR008; PR051TD; PS00503; PR051TD; PS00503	<pre>Mittington: family. transmission for the family. The function of the family. the family for the family. The function of the family. The family family. The family family. The family family. The family family. The family family family. The family family family. The family family family family. The family family family family family. The family family family family family family family. The family /pre>	Db 241 HQGFQLAMLKRFGVHKFLIIGICLMVFQQLSGVNAIMFYANTIFEEAKFKDSSLASVTVG 300 Qy 300 VIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGGGNSSHVAISAPV 359 :

.

Tue Sep 28 09:09:41 2004

÷

MEDLINE=20427701; FubMed=1097075 Doege H., Bocianski A., Joost H. "Accivity and genomic organizat: (GUT9), a novel member of the 1 predominantly expressed in brain Biochem. J. 350:771-776(2000). [2] SEQUENCE FROM N.A. TISSUE=Lvumboid.	RA YOUNG U.M. WOOWARD K.J., Aziz S., Burley M., Kwiatkowski D.J., RA Povey S.; RT "Cloning of a sugar transporter gene, a G-beta subunit like gene and RT three novel genes in human chromosome 9q34."; RL Submitted (SEP-1998) to the EMBL/GenBank/DDBJ databases. RN [3] RP SEDIFNCE FROM N.A.	 R. TISSUE-Existency. R. MEDLINE-22388257; PubMed=12477932; R. MEDLINE-22388257; PubMed=12477932; R. MEDLINE-22388257; PubMed=12477932; R. Mausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D., R. Altachul S.F., Zeolerg B., Buetow K.H., Schaefer C.F., Bhat N.K., R. Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., R. Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., R. Altachto L., Marusina K., Farmer A.A., Rubin G.M., Hong L., R. Altachton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., R. Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C., R. Rah S.S., Loguellano N.A., Peters G.J., Abranson R.D., Mullahy S.J., 	RA Richards SN., MCLEWAN FU.J., MCKETIAN N.J., MALEN J.A., GUARIALE F.H., RA Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., HUlyk S.W., RA Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A., J., RA Fahry J., Helton E., Ketteman M., Nadan A., Rochrigues S., Sanchez A., RA Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G.	RA Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., RA Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., RA Butterfield Y.S.N., Krzywinski M.I., Skalska U., Smailus D.E., RA Schnerch A. Schein J.R. Jones X.J.M. Marra M.A.	<pre>RT "Generation and initial analysis of more than 15,000 full-length RT human and mouse CDNA sequences."; RL Proc. Natl. Acad. Sci. U.S.A. 99:16899-16903 (2002) CC -1- FUNCTION: Facilitative queces transporter; binds cvtochalasin B</pre>	CC with low affinity. CC -!- SUBCELLULAR LOCATION: Integral membrane protein. The dileucine CC internalization motif is critical for intracellular sequestration CC (BV, similarity)	$\frac{1}{1}$ $\frac{1}{1}$		entities requires a license agreement (See http://www.isb-sib.ch/annour or send an email to license@isb-sib.ch). FMMH. V17801. CAR9666.1.		DR INTERPRO, IPR005823; Sug_transporter. DR InterPro; IPR003663; Sugar transpt. DR Pfam; PP00083; sugar trs; 1. DR PRINTS; PR00171; SUGRTRNSPORT. DR TIGRFAMS; TIGR00879; SP; 1.	
InterPro; IPR005928; Sub_tran InterPro; IPR005829; Sug_tran Pfam; PF00083; sugar tr; 1. PR0SITE; PS0080; MFS; 1. PR0SITE; PS00216; SUGAR TRANS PR0SITE; PS00217; SUGAR TRANS PR0SITE; PS00217; SUGAR TRANS Transport; Sugar transport; T NON TER 1 1 1 DOMIN	TRANSNEM 15 35 5 (POTENTAL) DOMAIN 36 38 EXTRACELULATAL DOMAIN 36 38 EXTRACELULATAL TRANSNEM 36 5 (POTENTAL) DOMAIN 36 38 EXTRACELULATAL DOMAIN 36 113 CYTOPLASMIC TRANSNEM 114 134 7 (POTENTIAL) DOMAIN 135 149 EXTRACELULATAL TRANSNEM 150 170 8<(POTENTIAL)	1-1-6 197 224 2261 2261 2316 334 36699 Mv	Query Match 62.6%; Score 1537.5; DB 1; Length 334; Best Local Similarity 87.7%; Pred. No. 5.4e-101; Matches 293; Conservative 17; Mismatches 23; Indels 1; Gaps 1;	QY 145 ISETAYPAVRGLLGSCVQLMYVVGTLLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPE 204 	QY 205 TPRFLLTQHRRQEAMAALRFLWGSEQGWEDPPIGAE-OSFHLALLRQPGIYKPFIIGVSL 263 : :	QY 264 MAFQQLSGVNAVMFYAETIFEEAKFKDSSLASVVVGVIQVLFTAVAALIMDRAGRRLLLV 323 	QY 3.24 LSGVVMVFSTSAFGAYFKLTQGGFQNSSHVAISAPVGAQPVDASVGLAWLAVGSMCLFIA 383	QY 384 GFAVGWGPTPWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWL 443 D 241 GFAVGWGPTPWLLMSEIFPLHVKGVATGVCVLTNWFMAFLVTKEFSSLMEVLRPYGAFWL 300	RESULT 5 GTR6_HUMAN ID GTR6_HUMAN STANDARD: PRT: 507 AA.	Q9UGQ3; 28-FEB-2003 (Rel. 41, Created) 28-FEB-2003 (Rel. 41, Last sequence updat 10-OCT-2003 (Rel. 42, Last annotation upd Solute carrier family 2, facilitated gluu Glucose transporter type 6) (Glucose tra	лднда	RN [1] RP SEQUENCE FROM N.A. RC TISSUE=Leukocyte;

2004
0
0
2
41
4
δ
õ
σ
ö
0
~
28
N
-
Sep
Ø
Ø
Ø
3
Tue

us-09-886-954a-1.rsp

D		OS Bacillus subtilis. OC Bacillus Firmicutes; Bacillales; Bacillaceae; Bacillus. OX NCBI_TaxID=1423; RN [1]			RN [3] RP SEQUENCE FROM N.A. C STRAIN=168; RX MEDLINE=98044033; PubMed=9384377; RA Kunst F., Ogasawara N., Moszer I., Albertini A.M., Alloni G.,	RA Azevedo V., Bertero M.G., Bessieres P., Bolotin A., Borchert S., RA Borriss R., Boursier L., Brans A., Braun M., Brigenll S.C., Bron S., RA Brouillet S., Bruschi C.V., Calwell B., Capuano V., Carter N.M., RA Choi S.K., Codani J.J., Connerton I.F., Cummings N.J., Daniel R.A., RA Denizof F., Devine K.M., Dusterhoft A., Brilich S.D., Emmerson P.T., RA Furian K.D., Eventon Disterhoft A., Brutich S.D., Emmerson P.T.,	RA Fritz C., Fujita M., Fujita Y., Fuma S., Galizzi A., Galleron N., RA Chim S.Y., Glaser P., Goffeau A., Golightly E.J., Grandi G., RA Guiseppi G., Guy B.J., Haga K., Harwood C.R., Henaut A., RA Hilbert H., Holsappel S., Hosono S., Hullo M.F., Itaya M., Jones L.,	RA Joris B., Karamata D., Kasahara Y., Klaerr-Blanchard M., Klein C., A. Kobayashi Y., Koetter P., Koningstein G., Krogh S., Kumano M., RA Kurita K., Lapidus A., Lardinois S., Lauber J., Lazarevic V., RA Lee S.M., Levine A., Liu H., Maeuda S., Mauel C., Medigue C.,	<pre>RA Medina N., Mellado R.P., Mizuno M., Moestl D., Nakai S., Noback M., RA Noone D., O'Reilly M., Ogwar K., Ogiwara A., Oudega B., Park S.H., RA Farro V., Pohl T.M., Portetelle D., Porwollik S., Prescott A.M., RA Presecan E., Pujic P., Purnelle D., Rapoport G., Rey M., Reynolds S.,</pre>	RA Rieger M., Rivolta C., Rocha E., Roche B., Rose M., Sadaie Y., RA Sato T., Scanlan E., Schleich S., Schroeter R., Soffone F., RA Sekiguchi J., Sekowska A., Secro S.J., Serror P., Shin B.S., Soldo B., RA Sorokin A., Tacconi E., Takagi T., Takahashi H., Takemaru K.,	RA Takeuchi M., Tamakoshi A., Tanaka T., Terpstra P., Tognoni A., Ra Tosato V., Uchiyama S., Vandenbol M., Vannier F., Vassarotti A., RA Viari A., Mambutt R., Wedler E., Medler H., Weitzenegger T., RA Winters P., Wipat A., Yamamoto H., Yamane K., Yasumoto K., Yata K.,		[4] CHARACTERIZATION. MEDLINE-99303315; Pubmed=10376822; Akbar S., Lee S.Y., Boylan S.A., Price C.W.;	RT "Two genes from Bacillus subtilis under the sole control of the RT general stress transcription factor sigmaB."; RL Microbiology 145:1069-1078(199). CC -1- FUNCTION: Could serve either a nutritional or an osmotic	
JOIL; LTAINSWEWDFALE; GLYCOPFOLEIN; CYTOPLASMIC (POTENTIAL). 1 (POTENTIAL). EXTRACELIULAR (POTENTIAL).	2 (POTENTIAL). CYTOPLASMIC (POTENTIAL). 3 (POTENTIAL). EXTRACELULAR (POTENTIAL). 4 (POTENTIAL).	CTIDELASMIC (FOIENTIAL). 5 (POTENTIAL). EXTRACELULAR (POTENTIAL). 6 (POTENTIAL).	5 X X	EXTRACELLULAR (POTENTIAL). 10 (POTENTIAL). CYTOPLASMIC (POTENTIAL). 11 (POTENTAL). EXTRACELULAR (POTENTIAL).	12 (FOTENTIAL). CYTOPLASHIC (FOTENTIAL). DILEGUENE INTERNALIZATION MOTIF (BY SIMILARITY). N-LINKED (GLCNAC) (POTENTIAL).	<pre>M -> T (IN REF. 2). MM; IFC6EZEB11588460 CRC64; 6%; Score 948; DB 1; Length 507; 7%; Pred. No. 1.9e-59; T66: Indels 44: Gans 11; </pre>	SAPRGR	IPSLQRAAPPAPRLDDAAASWFGAVYTLGAAAGGVLGGWLVDRAGRKLSLLLCSVFFVAG 110 RA : : : : RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA IP:1:S RA RA IP:1:S RA RA	FAUITAAQDVWMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGSCVQLMVVGIL 170 RA : :: : : :	LAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPETPRFLLTQHRRQEAMAALRFLWGSEQ 230 RA + : : : : : : : : : : : : : : : : : : : : : : : SLYALGLLLPWRWLAVAGEAPVLIMILLLSFMPNSPRFLSRGRDEEALRALAWLRGTDV 242 RA	-ALLRQPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIF 283 : : : : : : : : : WAEARAPHVCRPITVALLMRLLQQLTGITPILVYLQSIF 302	LASVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAY 339 : : ::: : :! : : AAIVGAVRLLSVLIAALTMDLAGRKVLLFVSAAIMFAANLTLGLY 359	AQPVDASVG-LAWLAVGSMCLFIAGFAVGWGFI 392 : : : : : ESWGDLAQPLAAPAGYLTLVPLLATMLFIMGYAVGWGFI 416	PWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSV 452 RT IIIIII: IIIIIII: IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	LFTLPCVPETKGKTLEOITAHFE-GR 477 : : : : CC VFTGCCVPETKGRSLEQIESFFRMGR 502
e family. 38 38 59	EM 82 EM 103 EM 112 EM 133 EM 141	EM 169 EM 169 EM 190	216 EM 290 311 EM 315 EM 336 EM 340	361 4436 4536 7536	464 484 484 50 50 50	s AA; ity serva	10 QPLLG : 3 EPLLGAEGPDY1	51 IPSLORAAPPAI : : : 63 IPALERSLDPDI	111 FAVITAAQDVM : :: : : 123 YALMAGAHGLW	171 LAYLAGWVLEWI : 183 SLYALGLLLPWI	231 GWEDPPIGAEQSFHL- 243 DVHWEFEQIQDNVRRQSSRVS	284 EEAKFKDSS : 303 DSTAVLLPPKDD-	340 FKLTQGGPGNSSHVAISAPVS 340 FKLTQGGPGNSSHVAISAPVS 360 IHFGPRPLSPNSTAGLES	393 PWLLMSEIFPL : 417 TWLLMSEVLPL	453 LFTLFCVPETK : 477 VFTGCCVPETK

-
ò
2004
Ň
•••
н
4
•••
σ
0
**
σ
60
ω
N
Sep
۵.
S
Tue
þ
н
٠

.

us-09-886-954a-1.rsp

Qy309Aalimpragrellevlsguvmvestsafgayfklinggdpgnsshvalsapusaqpudasv368Db297Amilidrugsvgitlingsvgitlelalsgul-litiglisa335Db297Amilidrugsvgitlingsvgitlelalsgul-litigLisa335Qy369Giawlavdswclfiagsvgwgpipwlimseipplinukguatgulutinglig1Db336Giawlavdswclfiagsvgwgpipwlimseipplinukguatgulutinglig1Db336Siawmuvvelgyvivegoatweppwwulmpeleppskargaatgettuvissamlivslurg395Oy429Silmevlirprgawulasafcifsvletlecvpetrgrubgottahfegg477Db396PlmLsamgiawvewvesviclisfefafayfwvpetrggkslebitlagi1Db396PlmLsamgiawvewvesviclisfefafayfwvpetrggkslebitlagi444	<pre>RESULT 7 PAGE TANDARD, PT, 472 A. D. D</pre>	TRANSMEM 179 199 6 (POTENTIAL
CC between the Swiss Institute of Bioinformatics and the EMBL outstation - CC the Buropean Bioinformatics Institute. There are no restrictions on its CC use by non-profit institutions as long as its content is in no way cc modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ CC or send an email to license@isb-sib.ch). EMBL; AB005554; BAA21604.1; DR EMBL; 299124; CAB16017.1; DR EMBL; 209124; CAB16017.1; DR EMBL; 299124; CAB16017.1; DR EMBL; 299124; CAB16017.1; DR EMBL; 299124; CAB16017.1; DR EMBL; 209124; CAB16017.1; DR EMBL; 200732; D70073. DR PIR; p70073; D70073. DR InterPro; IPR007114; MFS. DR InterPro; IPR005289; Sub_transporter.	PROSI Pfam, Pfam, Prosi Prosi Prosi Prosi Prosi Pronal Prans Pronal Prans Pronal Prans Pronal Prans	Db 237 KWIRPMLLİĞVGLAIFQQAVĞINTVIYYAPTIFTKAGLGTSASALGTMGIĞILNVİMCIT 296

- -

Tue Sep 28 09:09:41 2004

us-09-886-954a-1.rsp

,

<pre>RN [2] RP SEQUENCE FROM N.A. RC STRAIN=K12 / JM2433; RC STRAIN=K12 / JM2433; RA MEDLINE=88228015; PubMed=2836407; RA Maiden M.C.J. JONES-MORTIMEE M.C., Henderson P.J.F.; RT "The cloning; DNA sequence, and overexpression of the gene araE RT coding for arabinose-proton symport in Escherichia coli K12."; R1 J: Biol. Chem. 263:8003-8010(1988). R1 3] R2 SEQUENCE FROM N.A. R2 STRAIN=K12 / M014651 R2 MEDLINE=97426617; PubMed=9278503; R4 Blattnef F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., R4 Blattnef F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., R4 Mau B., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., R4 Mau B., SIAO Y.</pre>		RP SRQUENCE FROM N.A. RP SRQUENCE FROM N.A. STRATH-015717 / RIMD 0509952; KX MEDILNE-21156231, PubMed=11258796; RA Hayashi T., Makino K., Ohnishi M., Kuraka T., Tanaka M., Tobe T., RA Han CG., Ohtsubo E., Nakayama K., Muraka T., Tanaka M., Tobe T., RA Han CG., Ohtsubo E., Nakayama K., Muraka T., Tanaka M., Yasunaga T., RA tida T., Takami H., Honda T., Sasakawa C., Ogasawara N., Yasunaga T., RA tida T., Takami H., Honda T., Sasakawa C., Ogasawara N., Yasunaga T., RA tida T., Takami H., Honda T., Sasakawa C., Ogasawara N., Yasunaga T., RA tida T., Takami H., Honda T., Sasakawa C., Ogasawara N., Yasunaga T., RA tida T., Takami H., Honda T., Sasakawa C., Ogasawara N., Yasunaga T., RA tida T., Takami H., Honda T., Sasakawa C., Ogasawara N., Yasunaga T., RA tida T., Takami S., Shiba T., Hattori M., Shinagawa H., Jaboratory strain K-12."; RI DNA Res. 8:111-22(2001). RI DNA Res. 8:111-22(2001). RP RELIMINARY SEQUENCE OF 1-28 FROM N.A. RP MEDLINE-84114868; PubMed=6319708; RA MEDLINE-84114868; PubMed=6319708; RA MEDLINE-84114868; PubMed=6319708; RA Stroner C., Schleif R.P.; RT equence, transcription start site and DNA binding sites of T. Moll and D. M. 10:10:10:10:10:10:10:10:10:10:10:10:10:1		DR EMBL; J033732; AAA23466.1; DR EMBL; J033723; AAA23466.1; DR EMBL; X00272; CAA25075.1; DR EMBL; A200368; AAC75880.1; DR EMBL; AE003563; AAC75880.1; DR EMBL; AE005513; AAG579531; DR EMBL; AP002563; BAB37121.1; DR PIR; B26430; E36430. DR PIR; B26430; E36430. DR PIR; B26430; E365936. DR PIR; B26430; E365936. DR PIR; B26430. DR PIR; E4091; B91091. DR PIR; E4091; B91091. DR PIR; E40915; B485936. DR PIR; E40915; B485936. DR PIR; E40915; B85936. DR PIR; E40915; B91091. DR PIR; E40915; B91091. DR PIR; E40915; B91091. DR PIR; E40915; B91091. DR PIR; B910
<pre>200 257 CYTOPLASMIC (POTENTIAL). 258 279 297 PERIPLASMIC (POTENTIAL). 279 297 PERIPLASMIC (POTENTIAL). 298 318 8 (POTENTIAL). 319 325 CYTOPLASMIC (POTENTIAL). 319 325 9 (POTENTIAL). 326 332 9 (POTENTIAL). 362 382 10 (POTENTIAL). 363 340 11 (POTENTIAL). 364 427 PERIPLASMIC (POTENTIAL). 365 427 PERIPLASMIC (POTENTIAL). 478 427 PERIPLASMIC (POTENTIAL). 478 446 11 (POTENTIAL). 472 AA; SCOTE 606 5; DR 1; Lendth. 24.778; SCOTE 606 5; DR 1; Lendth. </pre>	<pre>Query Match 24.7%; Score 606.5; DB 1; Length 472; Best Local Similarity 33.7%; Pred. NO. 1.7e-35; Indels 35; Gaps 30 AFRAALGPLSFGFALGYSSPAIPSLQRAAPPARLDDAAGSWFGAVTLGAAGGVLGGW 31 AFAALGPLSFGFALGYSSPAIPSLQRAAPPARLDDAAGSWFGAVTLGAAGGVLGGW 32 AFAALGPLSFGFALGYSSPAIPSLQRAAPPARLDDAAGSWFGAVTLGAAGGVLGGW 33 AFAALGPLSFGFALGYSSPAIPSLQRAAPPARLDDAAGSWFGAVTLGAAGGVLGGW 34 </pre>	QY 206 PRFLITCHRRQEAMAALRFLWGSEQGWEDPPIGAEQSFHLALLR-QPGIXKPFII 259 Db 202 FW:1 : I I : : I : <td>424 AA ULT 8 EECOLI PARAE ECOLI PARAE ECOLI 01-MAR-1989 01-MAR-1989 01-MAR-1989 01-MAR-1989 01-MAR-1989 28 FEB-2003 Arabine 2003 Arabine 2003</td> <td>coli (coli (coli (562, 83 562, 83 15869; J. (DM N.A. 15869; J. (DA 15869; J. (DA 15869; J. (DA 15869; (da 15869; da 15</td>	424 AA ULT 8 EECOLI PARAE ECOLI PARAE ECOLI 01-MAR-1989 01-MAR-1989 01-MAR-1989 01-MAR-1989 01-MAR-1989 28 FEB-2003 Arabine 2003 Arabine 2003	coli (coli (coli (562, 83 562, 83 15869; J. (DM N.A. 15869; J. (DA 15869; J. (DA 15869; J. (DA 15869; (da 15869; da 15

r

Tue Sep 28 09:09:41 2004

~

.

us-09-886-954a-1.rsp

Db 403 TNWVSNMIIGATFLTLDSIGAGTFWLYTALNIAFVGITFWLIPETKNVTLEHI 457	SULT 9 LP_ECOLI	GALP ECOLI P37021;	DT 01-JUN-1294 (kel. 29, Ureated) DT 01-JUN-1994 (kel. 29, Last sequence update) DT 28-FEB-2093 (kel. 41, Last annotation update)	Galactose-proton symporter GALP OR B2943 OR C3529. Fecherichia coli and		- 07 <u>н</u>		•• •• •	RX MEDLINE-97426617; PubMed=9278503; RA Blattner F.R., Plunkett G. III, Bloch C.A., Perna N.T., Burland V., RA Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F.,		AI TIE COMPTECE BELOONE SEQUENCE OF ESCHETICHIA COLI A-12.77 RL Science 277:1453-1474 (1997).	RP 101 RC STRAIN=06:H1 / CFT073 / ATCC 700928; RC STRAIN=06:H1 / CFT073 / ATCC 700928;	<pre>MEDLINE=22388234; PubMed=12471157; Melch R.A., Burland V., Plunkett G. III, Redford P., Roe Welch R.A., Burland V., Plunkett G.</pre>	RA RARFO D., BUCKLES B.L., LIOU SK., BOULIN A., HACKELT J., STROUG D., RA Mayhew G.F., Rose D.J., Zhou S., Schwartz D.C., Perna N.T., RA Mchlev H.L.T., Donnenberd S., Sllattner F R.		RL Proc. Natl. Acad. Sci. U.S.A. 99:17020-17024 (2002). CC -!- FUNCTION: UPTAKE OF GALACTOSE ACROSS THE BOUNDARY MEMBRANE WITH		is produced through a collaborat Drmatics and the EMBL outstatic	the European Bioinformatics Institute. Ther use by non-profit institutions as long a	CC modified and this statement is not removed. Usage by and for commercial CC entities requires a license agreement (See http://www.isb-sib.ch/announce/ CC or send an email to licenseeisb-sib.ch).	CC				DR InterPro; IPR003663; Sugar transpt. DR Pfam; PF00083; sugar tr; 1. DR PRINTS; PR00171; SUGRTRNSPORT.		DR FROSITE; FS00217; SUGAR TRANSPORT_1; 1. DR FROSITE; PS00217; SUGAR TRANSPORT_2; J. KW Transport; Sugar transport; Transport 2: Inner membrane; Sumnort;	FT DOMAIN 1 15 CYTOPLASMIC (POTENTIAL).
нн	Pfam, PF00083; sugar Pfam, PF00083; sugar PRINTS; PR00171; SUG	TIGRFAMS; TIGR00879; SP; 1. PROSITE; PS20850; MFS; 1. DEDOSTUD: DECODIF: CITARD DANGEDON 1.		Complete proteome. DOMAIN 1 TRANSMEM 30	DOMAIN 51 63 PERIFLASMIC TRANSMEM 64 84 2 (POTENTIAL	TRANSMEM 115 135 4 (POTENTIAL DOMAIN 136 154 CYTOPLASMIC	TRANSMEM 155 175 5 (POTENTIAL) DOMAIN 176 178 PERIPLASMIC	TRANSMEM 179 199 6 DOMAIN 200 257 CY TEANEMEM 250 270 7	279 277 PERIPLASMIC 279 297 PERIPLASMIC 298 318 8 (POTENTIAL)	DOMAIN 319 325 TRANSMEM 326 346 DOMAIN 347 361	TRANSMEM 362 382 10 (POTENTIA DOMAIN 383 404 CVTOFLASMIC	TRANSMEM 405 425 11 (POTENTIA DOMAIN 426 427 PERIPLASMIC	TRANSMEM 428 4 DOMAIN 447 4 CONFLICT 26	472 AA; 51684 MW; 411990A441D44393 C	atch 24.5%; Score 603; DB 1; Length 472; cal Similarity 33.3%; Pred. No. 2.9e-35;	Matches 158	QY 9 TQPLIGPPGGSAPRGRRVFLAAFAAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAA 68 :	ASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLLCSVPFVAGFAVITAAQDVWMLLGGRL	93 WVVSSMMLGAALGALFNGWLSFKLGKKISLMGGALLFVLGSIGSAFATSVEMLIAARV	DY 1.29 LICHCOUCHENDELAYPAYRGLUGSCUDUMVUGILLAYLAGWULEN-FRUIAV 186 121 ULGIAVGIASYTAPLYLSEMASENVRGKMISMYQLMVTLGIVLAFLSDTAFSYSGNWRAM 180 121 ULGIAVGIASYTAPLYLSEMASENVRGKMISMYQLMVTLGIVLAFLSDTAFSYSGNWRAM 180	187 LGCVPPSLMLLLMCFMPETPRFLLTQHRRQEAMAALRFLMGSEQGWEDPPIGAEQSFH	Db 191 LGVLALPAVLLIILVVFLPNSPRWLAEKGRHIEÅEEVLRMLRDTSEKAREELNEIRESLK 240	245 LALLR-QPGIYKPFIIGVSLMAFQQLSGVNAVMFYAETIFEEAKFKDSSLAS	241 LKQGGWALFKINRNVRRAVFLGMLLQAMQQFTGMNIIMYYAPRIFRMAGFTTTEQQMIAT	QY 296 VVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVVMVFSTSAFGAYFKLTQGGPGNSSHVAI 355 : : : : : : : : : : :	QY 356 SAPVSAQPVDASVGLAWLAVGSMCLFIAGFAVGWGPIPWLLMSEIFPLHVKGVATGICVL 415 : : : : : : : : : : : :	-1	QY 416 TNWLMAFLVTKEPSSLMEVLRPYGAFWLASAFCIFSVLFTLFCVPETKGKTLEQI 470 : :: : :: : :

-

.

....

- - ----

-

<pre>Bikaryota; Fungi; Aeconytocta; Schizosaccharomytetes; Schizosaccharomytes. Schizosacharomytes. Schizosaccharomytes. Schizosaccharo</pre>	
<pre>FT TRANSMER 16 50 10 FORMUTAL). FT TRANSMER 16 0001X FT TRANSMER 10 011X FT TRANSMER 10 0101X FT TRANSMER 10 011X FT TRANSMER 10 011X FT TRANSMER 10 010X FT TRAN</pre>	Qy421 AFLVTKEFSSIMEVLRPYGAFWLASAFCIFSVLFTLFCVBETKGKTLEQITAH-FEGR 477Db398 NMIVGATFLTWLNTLGNANTFWYYAALNVLFILLTLWLVPETKHVSLEHIERNLMKGR 455Db398 NMIVGATFLTWLNTLGNANTFWYYAALNVLFILLTLWLVPETKHVSLEHIERNLMKGR 455RESULT 1011

n

2004
09:09:41
28
Sep
Tue
÷

•

<pre>ID GTR3_BOVIN STANDARD; PRT; 494 AA. GTR3_BOVIN STANDARD; PRT; 494 AA. DT 28-FEB-2003 (Rel: 41, Created) DT 28-FEB-2003 (Rel: 41, Last sequence update) DT 28-FEB-2003 (Rel: 41, Last sequence update) DE 28-FEB-2003 (Rel: 41, Last sequence update) DE 20-HEB-2003 (Rovine) DE 20-HEB-2003 (Rovine) DE 20-HEB-2003 (Rovine) DE 20-HEB-2003 (Rovine) DE 20-HEB-2003 (Rovine) DE 2010 (</pre>	<pre>-: SIMILANITY: BALONGS CO THE SUGAR TRAINFORTER FAMILY, Glucose :: SIMILSTREE SUBJANCE STRY: Si COPYTIGHT. It is produced through a collaboration Detwoen the SWISS FORT entry is copyright. It is produced through a collaboration the European this streament is not price and the FMBL outsetion so the European this streament is not restrictions on its use by non-profit institutions as long as is contracted through a contract and an multi so itcosmediable. It is produced through a collaboration contend and this streament is not removed. Usage by and for commercial contines requires a locense agreement (see http://www.iab-sib.ch/announce/ contend an multi locensediable.isb.ch). EMBL: A70308293 AMC03221 : - EMBL: A70087114 AMC0370871 AM - EMBL: A70087114 AMC037071 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL: A70087115 SUGAR TRANSPORT 1 : - EMBL:</pre>
DR FROSITE; FS00217; SUGAR_TRANSPORT 2; FALSE NEG. FT TRANSMEM 10 CTTOPLASMIC (FOTENTIAL). FT TRANSMEM 87 107 1(FOTENTIAL). FT TRANSMEM 108 129 EXTRACELIULAR (FOTENTIAL). FT TRANSMEM 108 129 EXTRACELIULAR (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 157 177 3 (FOTENTIAL). FT TRANSMEM 187 207 4 (FOTENTIAL). FT TRANSMEM 216 236 5 (FOTENTIAL). FT TRANSMEM 237 246 EXTRACELLULAR (FOTENTIAL). FT TRANSMEM 237 246 EXTRACELLULAR (FOTENTIAL). FT TRANSMEM 237 246 EXTRACELLULAR (FOTENTIAL). FT TRANSMEM 377 376 6 (FOTENTIAL). FT TRANSMEM 371 376 5 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 371 376 7 (FOTENTIAL). FT TRANSMEM 461 421 421 9 (FOTENTIAL). FT TRANSMEM 463 466 7 (TOPLASMIC (FOTENTIAL). FT TRANSMEM 463 466 7 (TOPLASMIC (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 511 531 11. (FOTENTIAL). FT TRANSMEM 512 57 AM, 52757 MM, 3B7GEFF6G596AE CRC64,	<pre>Duery Match Duery Match Best Local Similarity 29.8%; Pred. No. 7.1e-34; Matches 147; Conservative 90; Mismatches 201 5 DPEETOPLGEPGGSAPRGRAVELARPAAGGGLLFGYIGY 5 DTVEDQPVSKWWWLAPAAGGGLLFGYIAI 65 DDAASWFGAVVTLGAAAGGVLGGMLVDRAGRKLSLLL : 76 DTVEDQPVSKWWWLAPAAGGGLLGSCVO 65 DDAASWFGAVVTLGAAAGGVLGGMLVDRAGRKVIALI 125 GGRLLTGLACGVASLVAPVYISEIAPENTALUTVIN 125 GGRLLTGLACGVASLVAPVYISEIAPENKTLUKRERSQE 125 GGRLLTGLACGVASLVAPVYISEIAPENKTLUKKERSQE 125 GGRLLTGLACGVASLVAPVYISEIAPENKTLUKKERSQE 125 GGRLLTGLACGVASLVAPVYISEIAPENKTLUKKERSQE 125 GGRLLTGLACGVASLVAPVYISEIAPENKTLUKKERSQE 126 GGRLTGGLASLII : : : : : 125 GGRLTGGCVASLVAPVYISEIAPENKTLUKKERSQE 130 LIDBGVRDPFGGRAVVTVGVIQVLFTAVAALIMDRAGRRI 130 LLOBGVRDPFGGSRWOKIVKTFK-ELYPNPSNFPALLIL 245 GWRDNPTAGLIIAATNFVFTIVAFGVIDFFGRR 340 FKLTGGGPROSSHVAISAPVGOQUVLFTAVAALIMDRAGRRI 242 FFLPKUGFNNPTAGLIIAATNFVFTIVAFGVIDFFGRR 340 FKLTGGGPROSSHVAISAPVGOQNVAGGNAMAIVVL 341 : : : : : </pre>

2004
09:09:41
28
Sep
Tue

<pre>RT "Isolation of cDNAs and tissue specific expression of ovine glucose RT transporters."; RI Biochem. Mol. Biol. Int. 37:9-16(1995). R1 SEQUENCE OF 88-248 FROM N.A. [2] RP SEQUENCE OF 88-248 FROM N.A. RC TISSUE=Placenta; RC TISSUE=Placenta; RC TISSUE=97392487; PubMed=9250701; RX MEDLITE=97392487; PubMed=9250701; RX Pacenta 18:393-401(1997). RX OVINE glucose transporter. Probably a neuronal RI Placenta 18:393-401(1997). CC</pre>	CC This SWISS-PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - CC the EuroPean Bioinformatics Institute. There are no restrictions on its cC use by non-profit institutions as long as its content is in no way cC modified and this statement is not removed. Usage by and for commercial cC or send an email to license agreement (see http://www.isb-sib.ch/announce/ cC or send an email to license@isb-sib.ch). http://www.isb-sib.ch/announce/ cC or send an email to license@isb-sib.ch). DR EMBL; U89030; AAB49313.1; DR InterPro; IPR005828; Sug_transporter. DR InterPro; IPR005828; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR InterPro; IPR00583; Sug_transporter. DR PR0555; PR00116; SUGAR_TRANSPORT 1; 1. DR PR0555; PR0016; SUGAR_TRANSPORT 1; 1. DR PR0555; PR0016; SUGAR_TRANSPORT 1; 1. DR PR0555; PR0016; SUGAR_TRANSPORT 1; 1. DR PR0555; PR0555; Jugar Transport; Transport; Glycoprotein; Minitened Family.	<pre>FT DOMAIN Set Antily: CYTOPLASMIC (POTENTIAL). FT DOMAIN 5 5 6 TYTOPLASMIC (POTENTIAL). FT TRANSNEM 65 6 3 TYTOPLASMIC (POTENTIAL). FT TRANSNEM 65 6 3 COTENTIAL). FT TRANSNEM 125 124 TYTAL FT TRANSNEM 125 124 TYTAL FT TRANSNEM 125 124 EXTRACELULAR (POTENTIAL). FT TRANSNEM 125 124 EXTRACELULAR (POTENTIAL). FT TRANSNEM 125 145 7 (POTENTIAL). FT TRANSNEM 125 145 7 (POTENTIAL). FT DOMAIN 115 124 EXTRACELULAR (POTENTIAL). FT TRANSNEM 125 145 7 (POTENTIAL). FT TRANSNEM 125 145 7 (POTENTIAL). FT TRANSNEM 126 174 5 (POTENTIAL). FT TRANSNEM 126 174 5 (POTENTIAL). FT TRANSNEM 126 174 5 (POTENTIAL). FT TRANSNEM 270 265 7 (POTENTIAL). FT TRANSNEM 270 205 269 7 (POTENTIAL). FT TRANSNEM 270 205 269 7 (POTENTIAL). FT TRANSNEM 270 201 304 EXTRACELULAR (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 324 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 324 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9 (POTENTIAL). FT TRANSNEM 326 325 9</pre>
FT DOMAIN 385 399 CYTOPLASMIC (FOTENTIAL). FT TRANSMEM 400 420 11 (POTENTIAL). FT DOMAIN 421 424 EXTRACELLULAR (POTENTIAL). FT DOMAIN 421 424 EXTRACELLULAR (POTENTIAL). FT DOMAIN 422 445 12 (POTENTIAL). FT DOMAIN 425 445 CYTOPLASMIC (POTENTIAL). FT CARBOHYD 43 445 CYTOPLASMIC (POTENTIAL). FT CARBOHYD 43 445 CYTOPLASMIC (POTENTIAL). FT CARBOHYD 358 358 N-LINKED (GLCNAC) (POTENTIAL). FT CARBOHYD 358 358 N-LI	Db1#dfTrKTAPLIFAISVATIGSFOFGWTGVINAFAIIKDFLNTLERSRPPSS 56CY65DDAAASWFGAVYTLGAAGGVLGGWLVDRGRKJSLLLCSVFYAGFAVITAA 11757VLLTSLWSLSVAFFSVGGMIGSFSVGLFVNRFGRGNSMLIVNLLAIAGGCLMGFCKIA 114CY118QDVMMLLGGRLLTGLACGVASLVAPVYISEIAYPARGLGSCVQLMVVGILLAXLAGM 177CY118QDVMMLLGGRLLTGLACGVASLVAPVYISEIAYPARGLGSCVQLMVVGILLAXLAGM 177CY115ESVEMLIGRLIGLEGUASLWAPVYISEIAYPARGLGSCVQLMVVGILLAXLAGM 177Db115ESVEMLIGRLIGLEGUASLWAPVYISEIAYPARGLGSCVQLMVVGILLAXLAGM 177Db115ESVEMLIGRLIGLEGUASLWAPVISEIAYPARGLGSCVQLMVVGIGILLAXLAGM 177Db115ESVEMLIGRLIGLEGUASLWAPVISEIAYPARGLGSCVQLMVVGIGILLAXLAGM 177Db115ESVEMLIGRLIGLEGUASLMAPCHGESPARLLENCHRREGEARELLORLMGED 234CY178VLEWRMLAVLGCVPPSLMLLLMCFMPETPRFLLTOHRRQE-AMAALRFLMGSEQ 230Db175KVLLGFFDLWFLLGFFILPATIQCAALPFCPESPRFLLINCHRRQE-AMAALRFLMGEDGED 234CY178VLEWRMLAVLGCVPPSLMLLLMCFMPETPRFLLINCHRRQE-AMAALRFLMGEDGED 234CY178VL	<pre>0y 342 LTQGGPGNSSHVAISAPVAAPVANGSMCLFIAGFANGWGPIPWLIMSEIF 401 139GLGGMCSCILWTISLLIKDNYSWMSFICIGAILVFVAFFEIGGCPIPWFIVAELF 393 0y 402 PLHVKGVATGICVLTNWLMAFLVTKEFSSIMEVLAFFEIGGCPIPWFIVAELF 393 0y 402 PLHVKGVATGICVLTNWLMAFLVTKEFSSIMEVLAFFEIGGCPIFWFIVAELF 393 0y 455 TLFVVBTKGRTEDITAHFEGR 477 1 </pre>

CC This SWISS-PROT entry is copyright. It is produced through a collaboration CC This SWISS-PROT entry is copyright. It is produced through a collaboration CC between the Swiss Institute of Bioinformatics and the EMBL outstation - CC the Buropean Bioinformatics Institute. There are no restrictions on its CC use by non-profit institutions as long as its content is in no way CC modified and this statement is not removed. Usage by and for commercial CC entitles requires a license @greenet (See http://www.isb-sib.ch/announce/ CC or send an email to license@isb-sib.ch).	<pre>C C C C C C C C C C C C C C C C C C C</pre>
QY 26 VFLAAFAALGPLSFGFALGYSSPAIPSLQRAAPPAPRLDDAASWFGAV 75 Db : : : : : : : : 1 : <	<pre>133 ACTORTWARTERTAYERTAYERTAYERTAYERTAYERTAYERTAYER</pre>

- -

.....

Page 13

us-09-886-954a-1.rsp

Tue Sep 28 09:09:41 2004

•

•

Tue Sep 28 09:09:41 2004

<pre>RL Biochemistry 37:1322-1326(1998). - !- FUNCTION: Pacilitative glucose transporter. Probably a neuronal glucose transporter. CC</pre>		<pre>Ref Prover Hawerling States Ref Prints: Frequences transporter activity; TAS. MiW: 1393170;</pre>
QY 172 AYLAGWULEWRMLAVLGCVPPSLMLLLMCFNPETPRFLLTQHERQ-EAMAALEF 224 Db 169 AQVFGLDFILGSEELMPGLLGLTITPALLQSAALPFCPESPRFLLTNRKEEDQATELLQR 228 QY 225 LWGSEOGWEDPPIGAEQSFHLALLRQPGIYKFFIIGVSLMAFQQLSGVMAV 275 Db 225 LWGSEOGWEDPPIGAEQSFHLALLRQPGIYKFFIIGVSLMAFQQLSGVMAV 275 Db 229 LWGTPDVIQEIQEMKDESIRMSQEKQVTVLELFKSPSYFQPLLISGVUNVFSTSA 335 QY 276 MFYABTIFEEAKFKDSSLASVVGVIQVLFTAVAALIMDRAGRRLLLVLSGVUNVFSTSA 335 Db 229 PWTYSTGIFQDAGVGEPIYATIGAGVUNTIFTVVSLFLVERAGRRLLLVLSGVUNVFSTSA 335 QY 336 FGAYFKLTGGGPGNSSHVALSAPVASAQFVDVDAGVGRRLLLVLSGVUNVFSTSA 335 QY 336 FGAYFKLTGGGPGNSSHVALSAPVASAQFVDVDAGVGRRLLLVLSGVUNVFSTSA 335 Db 289 FYSTGIFQDAGVGEPIYATIGAGVUNTIFTVVSLFLVERAGRRLLLVLSGVUNVFSTSA 335 Db 289 FYSTGIFQDAGVGEPIYATIGAGVUNTIFTVVSLFLVERAGRRLLLMI	<pre>396 IMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFT 396 IMSEIFPLHVKGVATGICVLTNWLMAFLVTKEFSSLMEVLRPYGAFWLASAFCIFSVLFT 388 IVAELFSQSFRPAMAVAGSNWTSNFLVGMFFPSAAAYLGAY-VFIIFAAFLVFFLIFT 456 LFCVPETKGKTLBOITAHFBGR 477 456 LFCVPETKGKTFBDITTAHFBGR 477 447 SFKVPETKGRTFBDITTAFBGQ 468 3011 14</pre>	

•

4
0
0
200
Ľ,
4
••
0
••
σ
õ
œ
Ň
Sep
ň
Tue
•

<pre>RP SEQUENCE FROM N.A. RA Takeda J. Minokoshi Y., Yasuda K., Kayano T., Graeme B.I.; RL Submitted (JUL-1994) to the EMBL/GenBank/DDBJ databases. Submitted (JUL-1994) to the EMBL/GenBank/DDBJ databases. I al RP SEQUENCE FROM N.A. RC TISSUE=Retina; RC TISSUE=Retina; RC TISSUE=Retina; RC ADDIN=22398257; PubMed=12477932; RA Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., RA Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., RA Altsoner R.D., Collins F.S., Wagner L., Shemen C.M., Schuler G.D., RA Altsoner R.D., Collins F.S., Wang J., Hsieh F., RA Altsoner R.P., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., RA Strausberg M.J., Usdain H., Moore T., Max S.I., Wang J., Hsieh F., RA Diatchenko L., Marsina K., Farmer A.A., Rubin G.M., Hong L., RA Diatchenko L., Marsina K., Farmer A.A., Rubin G.M., Hong L., RA Brownstein M.J., Usdain T.B., Toshiyuki S., Carninci P., Mullahy S.J., RA Brownstein M.J., Usdain T.B., Toshiyuki S., Carninci P., Mullahy S.J., RA Brownstein M.J., Network R.J., Malek J.A., Gunarathe F.H., RA Brownstein M.J., Network R.J., Malek J.A., Gunarathe P.H., RA Brownstein A., Nouray D.M., Sodergen B.J., Lu X., Gibbs R.A., RA Villalon D.K., Mulay A., Young A.C., Shevchenko Y., Buotfard G.G., RA Wilting M., Madan A., Young A.C., Shevchenko Y., Boutfard G.G., RA Wilting M., Touchman J.W., Sciene B.D., Dickon M.C.,</pre>	<pre>RA ROOTIGUEZ A.C. GTIMUTE J., Marra M.K., RA BULTERFIELD Y.S.N. Krzywinski M.I., Skalska U., Smailus D.E., RA Schnerch A. Schein J.E. JONES S.J.M., Marra M.A.; RT human and mouse CDNA sequences."; Proc. Natl. Acad. Sci. U.S.A. 9916899-16903(2002). RI Proc. Natl. Acad. Sci. U.S.A. 9916899-16903(2002). Proc. Natl. Acad. Sci. U.S.A. 9916899-16903(2002). CC -1- FUNCTION: Facilitative glucose transporter. Probably a neuronal CC -1- SUBCELLULAR LOCATION: Integral membrane protein. CC -1- SUBLLULAR LOCATION: Integral membrane protein. CC -1- SUBLLULAR LOCATION: Integral membrane protein. CC -1- SUBLLULAR LOCATION: Integral membrane protein. CC -1- SIBLLULAR STATEMENT (SIGNA CONCECTIONS ON ILS CC -1- SIBLLULAR Statement is not removed. Usage by and for commercial CC -1- SUBLE LOURS AGREENDERDED. CC -1- SUBLE STATEMENT SECONCENDERDED. CC -1- SUBLE SECONCENDERDED. CC -1- SUBLE SECONCENDERDED. CC -1- S</pre>	<pre>EMBL; M5135; AAA37704.1; EMBL; X61093; CAA434066.1; - EMBL; U11845; AAB60666.1; JOII EMBL; U11845; AAB60666.1; JOII EMBL; U11846; AAB60666.1; JOII EMBL; U11849; AAB60666.1; JOII EMBL; U11851; AAB60666.1; JOII EMBL; U11852; AAB60666.1; JOII EMBL; U11852; AAB60666.1; JOII EMBL; U11852; AAB60666.1; JOII EMBL; U11852; AAB60666.1; JOII EMBL; U11852; AAB60666.1; JOII EMBL; U11852; AAB60666.1; JOII EMBL; BC058811; AA1751; JOII EMBL; BC058811; JOII EMBL; BC058811; JOII EMBL; BC058811; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; JOII EMBL; BC058811; JOII EMBL; JOII EMBL; BC05828; SUB_LTAN INTERPEO; JER005828; SUB_LTAN INTERPEO; JER005828; SUB_LTAN INTERPEO; JER005828; SUB_TAN INTERPEO; JER005828; SUB_TAN I</pre>
<pre>CONFLICT 357 358 DN -> NH (IN REF. 3). CONFLICT 376 576 F -> C (IN REF. 3). CONFLICT 425 425 H -> Y (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). CONFLICT 432 432 F -> L (IN REF. 3). Best Local Similarity 31.6%; Pred. No. 5.8e-33; Matches 152; Conservative 88; Mismatches 190; Indels 51; Gaps 26 VFLAAFAALGPLSFGFALGYSSFAIPSLQRAAPPARLDDAASWFGAV 10 LIFAITUATIGSFCFGYNTGVINAPEKTIKETIKTLTPKGNAPPSEVLICTSUMSLEVAL 76 VFLAAAGGVLGGMLVDRAFKRIKIKELLLCSVPPVAGFAVITAAQDVMMLLGGRLITGL 11 70 FSVGGMLGSFSVGLFVNRFGRRNSMLIVNLLAVTGGCFMGLCKVAKSVEMLILGRLIVGL 133 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 10 FSVGGMLGSFSVGLFVNRFGRRNSMLIVNLLAVTGGCFMGLCKVAKSVEMLILGRLIVGL 133 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 10 FSVGGMLGSFSVGLFVNRFGRRNSMLIVNLLAVTGGCFMGLCKVAKSVEMLILGRLIVGL 133 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 10 FSVGGMLGSFSVGLFVNRFGRRNSMLIVNLLAATGGCFMGLCKVAKSVEMLILGRLIVGL 133 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 10 FSVGGMLGSFSVGLFVNRFGRRNSMLIVNLAATAGGFFGCFFGCKVAKSVEMLILGRLIVGL 133 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 134 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 135 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 135 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 135 ACGVASLVAPVYISBIAYPAVRGLLGSCV0LMVVVGILLAXIAGWUL-EWRMLAVLG 140 11 11 11 11 11 11 11 11 11 11 11 11 11</pre>	QY 189 CUPPSLMLLIMCFMPETPRFLLTQHRRQF-AMALRFLWGSEGQWEDPPIGAEQSFH-244 Db 190 FTILPAILQGAALPFCPESPRFLLTNRKEBENAKOLLQRWGYDGDKDEDPIGAEQSFH-244 Db 245	<pre>477 R 477 477 R 477 477 R 477 468 Q 468 5ULT 15 5ULT 15 5ULT 15 5ULT 15 7ULT 193 (Rel: 26, Created) 01-UUL-1993 (Rel: 26, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 15-MAR-2004 (Rel: 43, Last sequence update) 16-UUL-1993 (Rel: 26, Last sequence update) 17 18-20112695; PubMed=173609; 10 11 18-20112695; PubMed=173609; 11 18-20112695; PubMed=173609; 11 18-20112695; PubMed=173609; 11 18-20112695; PubMed=173609; 11 18-2011269; PubMed=173609; 11 18-2011261; 19-20112695; PubMed=173609; 11 18-2011261; 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 10-2012, Rel: 26; Seinc S., Mayo K.E., Steiner D.F., 11 19-20112695; PubMed=173609; 11 19-20112695; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=173609; 11 19-2011269; PubMed=1730609; 11 19-2011261; PubMed=1730609; 11 19-2011261; PubMed=1730609; 11 19-2011261; PubMed=1730609; 10-11; PubMed=1730609; 10</pre>

Search completed: September 27, 2004, 19:27:12 Job time : 28 secs

•

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd

em_htg_hum: *
em_htg_inv: *
em_htg_other: *

em_vi:*

em_htg_mus:* em_htg_pln:* em_htg_rod:*

- nucleic search, using frame_plus_p2n model protein δ

September 28, 2004, 00:53:58 ; Search time 4589 Seconds
(without alignments)
4505.258 Million cell updates/sec US-09-886-954A-1 Run on: Title:

2457 1 MTPEDPEETQPLLGPPGGSA.....CVPETKGKTLEQITAHFEGR 477 Perfect score: Sequence:

BLOSUM62 Scoring table:

0.5 7.0 7.0 Xgapop 10.0 , Xgapext Ygapop 10.0 , Ygapext Fgapop 6.0 , Fgapext Delop 6.0 , Delext 3470272 seqs, 21671516995 residues Searched:

6940544 Total number of hits satisfying chosen parameters:

length: 0 length: 200000000 Minimum DB seq Maximum DB seq

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Command line parameters: -MOBEL=frame+ p2n.model -DEV=x1p -Q=/cgn2_l/USFTO spool_p/US0986554/runat_27092004_170631_13389/app_query.fasta_1.647 -DB=GeneEmbl -QFWT=fastap -SUFFIX=rge -MINMATCH=0.1_-LOOPCI=0 -LOOPEXT=0 -UNITS=bits -START=1 -END=1 -MATRIX=blosmac2 -TRANS=human40.cdi -LIST=45 -UNITS=bits -START=1 -END=1 -MATRIX=blosmac2 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAX=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL -UNITS=bits -START=1 -END=1 -MATRIX=blosmac2 -MAXLBN=20000000 -UNITS=bits -START=1 -END=1 -MATRIX=blosmac2 -MAXLBN=200000000 -USREUS0986954 @GGN 1 1.5600 @runat_27092004_170631_13388 -NCDU=6 -ICPU=3 -NO MMAP -LARGEQUERY -NEG SCORES=0 -MAIT -DSPBLOCK=100 -NGGLOG -DSV_TIMEOUT=120 -WARN_TIMEOUT=30 -THRRADS=1 -XGAPOP=10 -XGAPGNT=0.5 -FGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

Database

GenEmbl:*

BCU20113 Primer LU BD127313 Primer LU AK074836 Homo sapi AK074836 Hus muscu

AK074836 MMU413951 AL731852

10

36.8 36.3 36.3 35.4 35.4

904.5 904.5 891.5 891.5 870.5 824.5 807

AL445222 AK096630

225370

AC096489 AC103008 BT003466 BT010286

3114 250940 241623

υυ

AY122075

1673

3160 2093

804.5 789.5 788.5 788

HSA011372 BC058210

AX076677 BD127313

50

1541 2364 2171 2171 9582 198006

38.6

AJ413951 Mus muscu AJ413951 Mus muscu AL44522 Human DNA AL44522 Human DNA AL44522 Human DNA AC096489 Rattus no AC103008 Rattus no AT120309 Bratus no AT120308 Bratus no AT120308 Bratus no AT120308 Prosophil BT001286 Drosophil BT01286 Drosophil AT19564 Drosophil AY119564 Drosophil AY19563274 Arabidopil

Arabidops Arabidops

AY059848 / AY124845 / AY058435 I

AY059848 AY124845 AY058435 AF41206C

1557 1866

1587 1695

1464

736 734 734 734 734

AY119564 AY093274

2937

222000011100000 2220000111000000 2220000111000000

AF412060 Arabidops

ALIGNMENTS

RESULT 1

Drosophil

BC021758 Mus muscu AF495799 Ovis arie AT076679 Squence AX07165 Sequence BC013740 Homo sapien BD127367 Primer fo AK074927 Homo sapi AJ011372 Homo sapi AJ011372 Homo sapi AX076677 Squence BC058210 Mus muscu BC058210 Mus muscu

AB033418 AX191507 AX191507 BC049409 BC049409 AX191497 AX191497 AX191497 AX191497 AX076679 AX076679 AX677165 BD1277367 BD127367 AX0749277 AX0749277

10

1125.5 972.5 958.5 958.5 958.5 958.5 958.5 958.5 910.5 910.5

1929 1449

1012 1461

1554.5 1537.5 1411.5

1407 1268 1167

AX076671 Sequence AZ245936 Mus muscu AB033418 Rattus no AX191507 Sequence AF221324 Bos tauru BC049409 Danio rer AB083371 Gallus ga AX191497 Sequence

AJ245937 Homo sapi AX076667 Sequence Y17801 Homo sapien AX076669 Sequence

BC019043 Homo sapi

AX179740 Sequence

AX179740

6 2080

2457

2457 2448 2448

1873 2217

ß

Query Match Length DB

Score

No.

Result

Description

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

em_htgo_mus:*
em_htgo_other:*

em htgo hum:* em_htg_vrt:* em_sy:* em htg mam:*

SUMMARIES

AJ245935 Rattus no Y17802 Mus musculu AF232061 Mus muscu

BC019043 AS245937 AS275667 ASA776667 AX076669 RN0245935 RN0245935 AF232061 AZ72671 AX776671 MMU245936

10

1508 2087 2087 1490

100.0 99.6 99.6 89.5 87.7 87.5 87.3

2445 2162.5 2162.5

ыv æ σ

10 10

1843

2159 2150 2150 2146

10 10

2072

2189

em_ro:* em_sts:* em_un:*

em_pat:*

em_ph:* em_pl:*

ет от:* ет от:* ет оv:*

us-09-886-954a-1.rge

Sequence 28 from Patent AX179740.1 GI:15132104 AX179740.1 GI:15132104 Homo sapiens (human) Homo sapiens (bunan) Eukaryota; Metazoa; Choj Mammalia; Butheria; Prin 1 Baughn,M.R., Burford,N., Baughn,M.R., Burford,N., Baughn,M.R., Burford,N., Lal,P., Hillman,J.L., Az Gandhi,A.R., Tang,Y.T. Gandhi,A.R., Tang,Y.T. Gandhi,A.R., Tang,Y.T. Call,P., Mol Chos Incyte Genomics, Inc. (I Lucation/Quality of db_xref="taxot /note="troyte")	<pre>W00146258. cdata; Craniata; Vertebrata; Buteleostomi; nates; Catarrhini; Hominidae; Homo. Au-Young,J., Yue,H., Nguyen,D.B., Yao,M.G., and Khan,F.A. and Khan,F.A. 28-JUN-2001;</pre>	oy D oy	201 PheMetProGluThrProAr
	<pre>; Craniata; Vertebrata; Euteleostomi; ; Catarrhini; Hominidae; Homo. Young,J., Lu,D.A., Yang,J., Reddy,R., i,Y., Yue,H., Nguyen,D.B., Yao,M.G., han,F.A. SUN-2001;</pre>	du vo	
OOO	; Craniata; Vertebrata; Euteleostomi; ; Catarrhini; Hominidae; Homo. Young,J., Lu,D.A., Yang,J., Reddy,R., i,Y., Yue,H., Nguyen,D.B., Yao,M.G., han,F.A. UN-2001;	δγ	
NNCE DR BS Ource	<pre>; Craniata; Vertebrata; Buteleostomi; ; Catarrhini; Hominidae; Homo. Young,J., Lu,D.A., Yang,J., Reddy,R., i,Y., Yue,H., Nguyen,D.B., Yao,M.G., han,F.A. UN-2001;</pre>		221 AlateuArgPheLeuTrpG1
U O	Young,J., Lu,D.A., Yang,J., Reddy,R., i,Y., Yue,H., Nguyen,D.B., Yao,M.G., han,F.A. SUN-2001;	qQ	906 GCCTGCGGTTCCTGTGGGG
U O	i,Y., Yue,H., Nguyen,D.B., Yao,M.G., han,F.A. UN-2001;	δγ	241 GlnSerPheHisLeuAlaLe
E NAL ES ource	s UN-2001;	qa	766 CAGAGCTTTCACCTGGCCCT
escource		٥٧	261 ValSerLeuMetAlaPheG1
ource		qa	826 GTCTCCCTGATGGCC
	iens"	ő	281 ThrilePheGluGluAl
	ed DNA" 6"	qũ	886 ACCATCTTTGAAGAGGCCAA
į	. 1416107CB1"	QY	301 IleGlnValLeuPheThrAl
		qa	946 ATCCAGGTGCTGTTCACAGC
2.44e-167 2457.00		Q	321 LeuLeuValLeuSerGlyVa
t Similarity: 100.00% ocal Similarity: 100.00%	00	qC	1006 CTCCTGGTCTTGTCP
100.00%	Indels: 0 Gaps: 0	QY	341 LysteuThrGlnGlyGlyP
-09-886-954A-1 (1-477) x AX179740 (1		qu	1066 AAGCTGACCCAGGGTGGCC
QY 1 MetThrProGluAspProGluGluT	rdin Proteuteudly Proprodiydly SerAla 20	QY	361 AlaGlnProValAspAlaSe
Db 46 ATGACGCCCGAGGACCCAGAGGAAAA	ATGACGCCCGAGGCAGCCAGCCGGCCCCTTCTGGGGCCCCCCGGGGCAGCGCG 105	qC	
QY 21 ProArgGlyArgArgValPheLeuA	ProArgGlyArgArgYalPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 40	79 F	381 PheIleAlaGLyPheAlaVa
Db 106 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCTTCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		
QY 41 GlyPheAlaLeuGlyTyrSerSerPi	GlyPheAlaLeuGlyTyrSerSerFroAlaIleProSerLeuGlnArgAlaAlaProPro 60	oy 1	401 PheProLeuHisValLysG1
Db 166 GGCTTCGCGCTCCGCGCTACAGCTCCCC	GCCATCCCTAGCCTGCAGCGCGCCCCCCCG 225		
QY 61 AlaProArgLeuAspAspAlaAlaA 	AlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValThrLeuGlyAla 80	Хо - С	421 ALaPheLeuValThrLysGI 1306 Grottmrtrrcarga
Db 226 GCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	creetedecretererererererererere		
81 AlaAlaG	yGlyValteuGlyGlyTrpLeuValAspArgAlaGlyArgLySLeuSerLeu 100	d d	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		δΛ	461 GluThrLysGlyLys
QY 101 LeuleucysservalProPheValA Db 346 TrGCTGTGTCGTCGTCGTCGTCGTCGTCGT	Leudeucysserva.ProPheValAldCLYPheAlaValIleThrAlaAlaGLnAspVal 120 	qu	1426 GAAACTAAAGGAAAGACTCT
121		RESULT 2 BC019043	
Db 406 TGGATGCTGCTGGGGGGGGGCGCCTCC	TGARGETGETGGGGGGGGGCGCCTCTCACCGGCCTGGCCTGCGGGGGGGG	LOCUS	BC019043 ION Homo sapiens solute
Qy 141 AlaProValTyrIleSerGluIleA	altyrileSerGluileAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160		transporter) complete cds
Db 466 GCCCCGGTCTACATCTCCGAAATCG	CTACCCAGCAGCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUCTUC	VERSION	BC019043.2 GI:4022655
Qy 161 ValGinLeuMetValValGiyI. Db 526 GTGCAGCTAATGGTCGTCGTCGGCA.	euMetValValValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGlu 180 	SOURCE	WS
Qy 181 TrpArgTrpLeuAlaValLeuGlyC	Trining and the off of the second second second second second second second second second second second second s	REFERENCE	Mammalia, Eutheria; Pr DE 1 (bases 1 to 2145)

•

586	TGGCGCTGGCTGGCTGGCTGCGTGCCCCCCCCCCCCCC
201 1	PheMetProGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAla 220
646	CTTCCTGCTGACTCAGCACAGGCGCCCAGGAGGCCATGGC
21	4
706 (IGCGGTTCCTGTGGGGCTCCGAGCAGGGCTGGGAAGACCCCCCCATCGGGGCTGAG 76
41	
66	82
61	c0 c
	0 0
9 U B	Initierreausuusiaverreavesbestsbesteraaaseraatvatspyal 300 Accarctigaagagggcaagttcaaggacaggacagggcgggcctgggcgggggggg
301	<pre>IleClnValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArgLeu 320 </pre>
946 7	Internet and a second contraction and a second
321 1	LeuLeuValLeuSerGlyValValWetValPheSerThrSerAlaPheGlyAlaTyrPhe 340
006	TCCTGGTCTTGTCAGGTGTGTTGGTGTTCAGGTGCCTTCGGCGCCTACTTC 1065
41	LysLeuthrClnClyClyProGlyAsnSerSerHisValAlaIleSerAlaProValSer 360
8 5	211
26 L	Aldollic Yora has paraser valor y beundar i pueda avaita y servector y provident avaitation of the servector
381 I	sAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGluIle 40
186 7	TTATTCACCGGCTTTGCGGGGGGCCCATCCCCTGGCTCCCCCGGCTCCCCGGGGGCCCATCCCCCGGCTCGGGGGCCCATCCCCCGGGCCCCCCCGGCTCCCCCGGGGGCCCCATCCCCCGGGGCCCCATCCCCCGGGGGCCCCATCCCCCGGGCCCCCGGGGGCCCCATCCCCCGGGCCCCCGGGGCCCCATCCCCCGGGCCCCCCGGCGCCCCGGGCCCCGGCGCCCCGGCGC
401 H	PheProLeuHisValLysGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeuMet 420
246 7	TCTGCATGTCAAGGGCGTGGCGGCGACAGGCCAT
2106	laPheLeuValThrLysGluPheSerSerLeuWetGluValLeuArgProTyrGlyAla 440
41	ValPro 460
1366 1	TICHININININININININININININININININININI
ч	luThrLysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg 477
9	GAAACTAAAGGAAAGACTCTGGAACAAATCACCAGCCCATTTTGGGGGGGG
ON HON Lra	19043 2145 bp mRNA linear PRI 19-DEC-2003 10 Sapiens solute carrier family 2, (facilitated glucose 15porter) member 8, mRNA (CDNA clone MGC:20634 IMAGE:4641145),
	<u>ن</u>
M Hon For	an) Chordana Craniana. Vortoheata. Duteloontomi
Man Nan Str	aryoua; mecazoa; unordaca; utamaca; verepraca; bucereoscomi; malla; Eutheria; Primates; Catarrhini; Hominidae; Homo. (bases 1 to 214) ausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G.,
	С 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

<pre>/protein_id="AAH19043.1" /db_xref="G1:17512130" /db_xref="G1:17512130" /db_xref="G1:17512130" /db_xref="G1:17512130" /db_xref="Ion="WIM:60524" /db_xref="MIM:60524" /db_xref="MIM:MSBITPLATION" /db_rref="MIM:MSBITPLATION" /db_rref="MIM:MSBI" /db_rref="MIM:MSBITPLATION" /db_rref="MIM:MS</pre>	Pred. No.:2.53e-167Length:Score:2457.00Matches:Score:2457.00Matches:Percent Similarity:100.00%Mismatches:Best Local Similarity:100.00%Mismatches:DB:90.00%Gaps:	<pre>US-09-886-954A-1 (1-477) x BC019043 (1-2145) QY 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAl QY 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAl Db 46 ATGACGCCGAGGGACCCAGAGGAAACCCAGCGCGCGCTTCTGGGGGCCTCCTGGCGGGGGCGCGC Ov 21 ProArdGlyArdArdValPhetenlalabhahalalalaionClyProfeuCorbh Ov 21 ProArdGlyArdArdValPhetenlalabhahalabhahalalaionClyProfeuCorbh </pre>	п н с	DB 286 GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		201 201 646
<pre>Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Jeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bouddo,M.F., Casavant,T.L., Stapleton,M., Soares,M.B., Bouddo,M.F., Casavant,T.L., Stapleton,M., Soares,M.B., Souddo,M.F., Casavant,T.L., Stapleton,M., Soares,M.B., Souddo,M.F., Casavant,T.L., Stapleton,M., Soares,M.B., Souddo,M.F., Casavant,T.L., Stapleton,M.D., Soares,M.J., Usdin,T.B., Toshiyuki,S. Carninci,P., Frange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abranson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., Norley,K.C., Hale,S., Garcia,A.M., GayL.J., Hulyk,S.W., Villalon,D.K., Muzry,D.M., Sodargren,E.J., Lu,X., Gibbs,R.A., Sanchez,A., Miting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G. Blakesley,R.M., Touchman,J.W., Green,B.D., Duffeld,Y.S., Krzywinski,M.I., Skalska,U., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Schmutz,J., Myers,R.M., JOURNAL Proc. Nacl. Acid. Sequences 117LB Hum and mouse CDNA sequences</pre>		REMARK NIH-MGC Project URL: http://mgc.nci.nih.gov COMMENT On Dec 19, 2003 this sequence version replaced gi:17512129. Contact: MGC help desk Email: cgapbs-r@mail.nih.gov Tissue Procurement: ATCC/DCTD/DTP CDNA Library Preparation: Rubin Laboratory CDNA Library Preparation: Rubin Laboratory CDNA Library Arrayed by: The 1, M.A.G.E. Consortium (LLNL)	<pre>DNA Sequencing by: National Institutes of Health Intramural Sequencing Center (NISC), Gaithersburg, Maryland; Web site: http://www.nisc.nih.gov/ Contact: nisc_mgc@nhgri.nih.gov/ Contact: nisc_mgc@nhgri.nih.gov Akhter,N., Apelek., Beckstrom-Sternberg,S.M., Benjamin,B., Akhter,N., Bouffard,G.G., Breen,K., Brinkley,C., Brooks,S., Blakesley,R.W., Bouffard,G.G., Breen,K., Gupta,J., Haghighi,P., Hansen,N., Hols-L., Karlins,E., Kwong,P., Laric,P., Legaspi,R., Maduro,Q.L., Maskello,C., Maskeri,B., Maskrian,S.D., McCloskey,J.C., McDowell,J., Pearson,R., Stantipop,S., Thomas,P.J., Funchman,J.W., Fungeon,C., Vogt,J.L., Walker,M.A., Wetherby,K.D., Wiggins,L., Young,A., Zhang,LH. and Green,E.D.</pre>	Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov Series: IRAL Plate: 30 Row: n Column: 3 Finis clone was selected for full length sequencing because it passed the following selection criteria: matched mRNA gi: 21361448. Location/Qualifiers passed the following selection criteria: matched mRNA gi: 21361448. . Location/Qualifiers forganism="Homo sapiens" /mol_type=mRNA" /mol_type=mRNA" /mol_type=mRNA" /lab hef="http://image.location.go(" /lab hef="http://image.location.go(" /lab hef="http://image.location.go(" /lab hef="http://image.location.go" /lab hef="http://image.location.go"	<pre>gene 12145 POTD7" gene 12145 POTD7" /gene="SLC2A8" /note="Synonyms: GLUTX1, GLUT8" /db_xref="IncusID:29988" /db xref="MTM", 6675.45"</pre>	CDS 461479 /gene="SLC2A8" /codon start=1 /product="solute carrier family 2, (facilitated glucose transporter) member 8"

.

Page 3

JOURNAL Submitted (02-SEP-1999) Ibberson M.R., Institute of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, Lausanne, CH-1005, SWITZERLAND FEATURES Location/Qualifiers source 11873	DS e	<pre>/gene="GLUTX1" /codon_start=1 /product="glucose transporter" /product=inid="CAB75702.1" /protein_id="CAB75702.1"</pre>	/ udxref="G01;09NY64" / db_xref="G01;09NY64" / db_xref="SWISS-PROT;09NY64" / translation="MTPEDPEETOPLGPEGSAPRGRRVFLAAFAAALGPLSFGFAL crssparpstphDatastcarthonaAgrarthonaAgrarthonaGFKIstill	CSYPEYAGEAL FOLVENARY FOR KULLGGRULTGLACGYAGUVAGUVAGUVAT SELAY PAYGGLIGSC CSYPEYAGEAL FOLVENALLGGRULEWRLLAVLGGVPESLMULLMCEMPETPERLLTGJARGEA VQLMVVVGTLLAYLAGWULEWRKLAVLGGVPESLMULLMOEMPETPERLLTGJARGEA MALIRFLMSEBQMEDPPIGAGASPHILADAAAAAAI.IMDRAGRRLLIVLSGVVMVFSTS FYARTIFEERKKDSSLASAVVOVLUVLFTAVAAI.IMDRAGRRLLIVLSGVVMVFSTS	AFGAYFKLTQGGPGNSSHVAISAPVŠAQPVDASVGLAWLAVGNMCLFIAGFAVGWGPI PWLLMSEIFPLHVKGVATGICVLTNWLMAFLVTKBFSSLMEVLRPYGAFWLASAFCIF SVLFTLFCVPEIKGKTLEQITAHFEGR"	17 Length:	milarity: 99.79% Similarity: 99.58% h: 99.63%	: -09-886-954A-1 (1-477) x HSA245937 (1-1873)		QY 21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaLeuGlyProLeuSerPhe 40 Db 64 CCCGGGGCGGGCGGCGGCGCGCGCGCCTCGCCGGCGGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCCGGCGGCGGCGGCGGCGGCGGCGGGCCGGCGGGCGGGCGGGG	Qy 41 GlyPheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro 60 Db 124 GGCTTCGGCCTCGGGCTACGGCCAFCCCTGGCGCGCGCGCGCGCCCCG 183	Qy 61 AlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValThrLeuClyAla 80 Qy	Qy B1 AlaAlaGlyGlyGlyGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeu 100 Db 244 GCGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Qy 101 LeuLeuCySSerValProPheValAlaGlyPheAlaVal11eThrAlaAlaGlnAspVal 120 Qy 1	Qy 121 TrpMetLeuleuGlyGlyArgLeuLeuThrGlyLeuÅlaCySGlyValÅlaSerLeuVal 140 Db 364 TGGATGCTGGGGGGGGGGGGGCGCCTCCCCGGCCTGGCCGGGCTGGCCGCC	Qy 141 AlaproValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160 V	Qy 161 ValGlnLeuMetValValValClyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGlu 180
<pre>Qy 221 AlaLeuArgPheLeuTrpGlySerGluGInGlyTrpGluAspProProlleGlyAlaGlu 240</pre>	766 CaGaGCTTTCACCTGGCCTGCTGCGGCGGGCCGGGCATCTACAAGCCCTTCATCATCATCGGC 761 ValSerLeuMetAlaPheGlnGlnLeuSerGlyvalAsnAlaValMetPheTyrAlaGlu 261 ValSerLeuMetAlaPheGlnGlnLeuSerGlyvalAsnAlaValMetPheTyrAlaGlu 826 TUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	281 ThrilePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValValGlyVal 30 	Qy 301 IleGlnValLeubheThrAlaValAlaAlaLeuIleMetAspArgAlaGlYArgArgLeu 320 0	Qy 321 LeubeuvalbeuserGlyValValMetValPheSerThrSerAlaPheGlyAlaTyrPhe 340 (111111111111111111111111111111111111	Qy 341 LysLeuthrGlnGlyGlyProGlyAsnSerSerHisValAlalleSerAlaProValSer 360 Db 1066 AdGTGACCCAGGGTGGCCTGGCAACTCCTGGGGCCATGTCTCGGGGCCCTGTCTCT 1125	Qy 361 AlaGlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCysLeu 380 Db 1126 GCACAGCCTGTTGATGCCAGCGTGGCCTGGCCTGGCCGTGGCGCGCGC	Qy 381 PheIleAlaClyPheAlaValGlyFrpGlyProIleProTrpLeuLeuMetSerGluIle 400 Diagram ////////////////////////////////////	Qy 401 PheProLeuHisValLysGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeuMet 420 Db 1246 TTCCCTCTGCATGGCGSTGGCGACGGCGACGGCGATCTGCGTCCTCACCAGCTGGCTCATG 1305	Qy 421 AlaPheLeuValThrLysGlupheSerSerLeuMetGluValLeukrgProTyrGlyAla 440 0 1<	441 PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValPro 460 [461 GluThrLysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg 477 11116 []			KEYWORDS glucose transporter; GLUTX1 gene. SOURCE Homo sapiens (human) ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;	nidae, expres	central nervous system and insulin-sensitive tissues JOURNAL J. Biol. Chem. 275 (7), 4607-4612 (2000) MEDLINE 20138191 PUBMED 10671487	REFERENCE 2 (bases 1 to 1873) AUTHORS Ibberson,M.R. TITLE Direct Submission

~

us-09-886-954a-1.rge

Tue Sep 28 09:09:39 2004

Page 4

REFERENCE 1 AUTHORS Thorens, B., Ibberson, M. and Uldry, M. TUTTLE Glutx polypeptide family and nucleic acids encoding same JOURNAL Fatent: WO 0104145-A 118 -AN-2001; JOURNAL Location/Qualifiers JOURNAL Location/Qualifiers JOURNE Location/Qualifiers JOURNE Location/Qualifiers JOURNCE Location/Qualifiers JOURNCE Location/Qualifiers JOURNCE Location/Qualifiers JON Lype="unassigned DNA" Abc.ref="atance"tone"unaseigned DNA" Abc.ref="atance"coccaststoncococcastoncococcaststonce"toccastoncococcaststonce"toco	ORIGINAlignment Scores:1.17e-166Length:2217Pred. No.:2.448.00Matches:475Score:29.79%Conservative:1Percent Similarity:99.59%Mismatches:1Dest Local Similarity:99.63%Indels:0DB:6Gaps:00US-09-8B6-954A-1 (1-477) x AX076667 (1-2217)12217)12217	Qy 1 MetThrProGluApProGluGluThrGlnFroLeuLeuGlyProProGlyGlyGerAla 20 Db 348 ATGACGCCGAGGACCCAGAGGAACCCAGCGCGCTTCTGGGGGCGCGCGGCGGCG 407 0y 21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaA	Qy 41 GlypheAlaLeuG1yTyrSerSerProAlaTleProSerLeuG1nArgAlaAlaProPro 60 Db 468 GGCTTGGGGCTGGGCTAGGCTCCCGGGCCATCCCTAGCCTGGGGGGGG		QY 121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCySGlyValAlaSerLeuVal 140 Db 708 []] <td< th=""></td<>
Db484GTGCAGCTAATGGTCGTCGTCGGCATCCTCGGCCTAGCTGGGGGCGGGGGGGG	<pre>301 IleGInValLeuPheThrAlaValAlaValAalaLeuIleMetAspArgAlaGlyArgArgLeu 111111111111111111111111111111111111</pre>	DB 1024 AAGCTGACCCTGGGAACTCCTCGCACGTGGCCATCTCGGCGCCTGTCTCT 1083 OY 361 AlaGlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCysLeu 380 1084 GCACAGCCTGTTGATGCCAGCGTGGGGCTGGGCTGGCCGGGGGCAACATGTGCCTC 1143 OY 381 PheIleAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGlutle 400 http://lini	<pre>401 PheProLeuHisValLysGlyvalAlaThrGlyIleCysValLeuThrAsnTrpLeuMet 401 PheProLeuHisValLysGlyvalAlaThrGlyIleCysValLeuThrAsnTrpLeuMet 1204 TTCCCTCTGCATGTCAAGGGGCGTGGGCGACGGCCATCTGCGTTCTCGCTTG 421 AlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAla 1264 GCCTTTCCGTGACCAAGGAGTTCACCAGGGCGTCATGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCTTAGGAGGCCCCTTAGGAGGCCCTTAGGAGGCCCTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGGCCCTTAGGAGCCCTTAGGAGCCCTAGGCCCTTAGGAGGCCCTAGGCCCTTAGGAGGCCCTAGGCCCCTAGGAGCCCCTAGGCCCCTAGGCCCCTAGGAGCCCCTAGGCCCCTAGGAGCCCCTAGGCCCCTAGGCCCCTAGGAGCCCCTAGGCCCCTAGGCCCCTAGGCCCCTAGGCCCCTAGGAGCCCCTAGGCCCCTAGGCCCCTAGGCCCCTAGGCCCCTAGGCCCCTAGGCCCCTAGGCCCCCCCC</pre>	<pre>41 PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThLeuPheCysValPro 41 PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValPro 1124 TrCPGGCTrGCCTrCGCArCrTGGCArCTrCGGGTCTGGTCTCGGTGGCCTGGCTGGCTGGCTTGGCArCGGGTGGGCTGGGC</pre>	RESULT 4 AX076667 AX076667 2217 bp DNA linear PAT 06-FEB-2001 DCUS AX076667 AX076667 1 G1:12711198 ACCESSION AX076667.1 G1:12711198 ACCESSION AX076667.1 G1:12711198 CERSION AX076667.1 G1:12711198 COURCE Homo sapiens (human) ORGANISM Homo sapiens (human) ORGANISM Homo sapiens (human) Mammalia; Butheria; Primates; Catarrhini; Hominidae, Homo.

-

.

2004
09:09:39
28
Sep
Tue

S e S	ArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuMe
dq	
Qy da	<pre>221 AlaLeuArgPheLeuTrpGlySerGluGInGlyTrpGluAspProFrolleGlyAlaGlu 240 1010 008 GCCTGCGGFTCCTGGGGGCTCCGAGGGCGGGGCTGGGAGGCCCCCCCCTCGGGGCTGAG 1067</pre>
Q Pb	241 GINSerPheHisLeulaLeuleukrgGInbroGlyIleTyrLysProPheIleIleGly 260
A A	<pre>261 ValSerLeuMetAlaPheGInGInLeuSerGlyValAsnAlaValMetPheTyrAlaGlu 280 1111 </pre>
A D D	<pre>281 ThrIlePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValValGlyVal 300 1188 ACCATCTTTGAGGAGCCCAAGTTCAAGGACAGCAGCCTGGGCTGGGTCGTC 1247</pre>
Q	301 IleGlnValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArgLeu 320 11 </td
ζς Ag	321 LeuleuValleuSerGlyValValWetValPheSerThrSerAlaPheGlyAlaTyrPhe 340
QV da	341 LysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlalleSerAlaProValSer 360 11 </td
QV Db	<pre>361 AlaGInProvalAspAlaServalGlyLeuAlaTrpLeuAlavalGlySerMetCysLeu 380</pre>
cy Db	381 PheIleAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGluIle 400
AQ AQ	401 PheProLeuHisValLyGIyValAlaThrGlyIleCySValLeuThrAsnTrpLeuMet 420
λο Ag	421 AlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAla 440
vo da	441 PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValPro 460 1 </td
	461 GluthrLysGlyLysThrLeuGluGInflethralaHisPheGluGlyArg 477 1 1 1 1 728 GAAATTAAAGGGAAGCAACCAACAGGCCATTTTGGGGGGGCG 1778
RESULT 5 HSA17801 LOCUS DEFINITION ACCESSION VERYWORDS SOURCE ORGANISM REFERENCE AUTHORS	DH ME HO KKHH

0 5.4 .4	<pre>/mol_type="mRNNA" /db_xref="mRNNA" /tissue_type="te gene="cUUTB" gene="cUUTB" gene="cUUTB" gene="cUUTB" gene="cUUTB" gene="cUUTB" gene="cUUTB" /product="glucos /protein_id="cMS /db_xref="glucos /db_xref="glucos" /db_xref/db_xref="glucos" /db_xref/db_xref<th>ORIGINORIGINAlignment Scores:1.21e-166Pred. No.:1.21e-166Length:1508Score:2455.00Score:2455.00Score:29.58%Conservative:0Best Local Similarity:99.51%DB:9.51%DB:9</th><th><pre>US-09-B86-954A-1 (1-477) x HSA17801 (1-1508) QY 1 MetThrProGluAspProGluGluThrdlnProLeuLeuGlyProProGlyGlySerAla 20 QY 1 MetThrProGluAspProGluGluThrdlnProLeuLeuGlyProProGlyGlySerAla 20 Db 27 ArGaCGCCGAGGGGAGACCCAGCCGGCCGCCTCCTGGGGGCGGCGGGGGGGG</pre></th><th>Qy 21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 40 Db 111111111111111111111111111111111111</th></pre>	ORIGINORIGINAlignment Scores:1.21e-166Pred. No.:1.21e-166Length:1508Score:2455.00Score:2455.00Score:29.58%Conservative:0Best Local Similarity:99.51%DB:9.51%DB:9	<pre>US-09-B86-954A-1 (1-477) x HSA17801 (1-1508) QY 1 MetThrProGluAspProGluGluThrdlnProLeuLeuGlyProProGlyGlySerAla 20 QY 1 MetThrProGluAspProGluGluThrdlnProLeuLeuGlyProProGlyGlySerAla 20 Db 27 ArGaCGCCGAGGGGAGACCCAGCCGGCCGCCTCCTGGGGGCGGCGGGGGGGG</pre>	Qy 21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 40 Db 111111111111111111111111111111111111
gene CDS CDS Ment Scores: No.: No.: No.: No.: No.: Similarity: Match: MetThrP 27 ATCACGC 21 ProArGG 21 ProArGG 21 ProArGG 21 ProArGG	<pre>N ment Scores: 1.2le-166 Length: 1508 1.2le-166 Length: 1508 1.2le-166 Length: 1508 1.2le-166 Length: 1508 1.2le-166 Length: 275 2.2 Mismatches: 2 Mismatches</pre>	<pre>-09-886-954A-1 (1-477) x HSA17801 (1-1508) 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 1 metThrProGluAspProGluGluThr[1][1][1][1][1][1][1][1][1][1][1][1][1][</pre>	<pre>21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 1 </pre>	in the first of t

<pre>1 MetThrProGludspProGluGlufhrGlnProLeuLeuGlyProProGlyGlySerAla 20 21 ProArgGlyArgArgValPheLeuAlaAlabheAcccAgGGGCGCGCCTTGGGGCCAGGGGCAGGGGG 86 21 ProArgGlyArgArgValPheLeuAlaAlabheAlaAlabhalla(1)[1][1][1][1][1] 87 CCCCGGGGGCGGCGTCTCGGCGGCTTCGGGGGCTGGGCTGGGCGGGCGGGCGGGCGTCTCGGGGCTGCCGGGGCGGC</pre>

-

2004
09:09:39
P 28
Tue Sep

us-09-886-954a-1.rge

	GLUTXI, a Central n J. Biol 20138191 10671487 2 (bases) 2 (bases) 2 (bases) 1bberson, Direct Su Submitted and Toxic CH-1005, e	ψ	CTVPS CTVPS CTVPS MRAALI SAFRA LISULL	Alignment Scores: Alignment Scores: Score. No.: 2 Score Similarity: 9 Best Local Similarity: 8 Derry Match: 1 DB: 00-886-954A-1 (1-477)	1 MetThrProGl 1 ::: 30 ATGTCGCCCGAA 21 ProArgGlyAr 90 CCCGGCGGCCG	41 GlyPheAlaLe 111111111111111111111111111111111111
DEFINITION ACCESSION VERSION VERSION KEVWORDS SOURCE SOURCE ORGANISM REFERENCE AUTHORS	TITLE TITLE JOURNAL MEDLINE PUBMED PUBMED REFERENCE AUTHORS TITLE JOURNAL FEATURES SOURC	4 8 2 2 8 0 0		VK1GIN Alignment Pred. No. Score: No. Score: S Percent S	\$ 8 8 8	<u>ତ ୫ ତ ୫</u>
<pre>390 TGGATGCTGGTGGAGGCCGCCTCCCCGGCCTAGCCTGGGGAGTCGCCTCATTAGTG 449 141 AlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160 141 AlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160 141 AlaProValTyrILESerGluIleAlaTyrLeuAlaGlyTrpValLeuGlu 180 161 ValGInLeuMetValValValValGCTAGGCCTACCGGCGGTTGGAGGGAGTCCTGT 509 161 ValGInLeuMetValValValValLeLeuLeuAlaTyrLeuAlaGlyTrpValLeuGlu 180 161 ValGInLeuMetValValValValValValLeuLeuAlaGlyTrpValLeuGlu 180 161 TrpArgTrpLeuAlaGlyCysValProPProSerLeuMetLeuLeuLeuAlaGlyCys 200 181 TrpArgTrpLeuAlaValLeuGlyCysValProPProSerLeuMetLeuLeuLeuMetCys 200</pre>	<pre>570 [16][10][10][10][10][10][10][10][10][10][10</pre>	750 CACCÄGGGCTTCCAGCTGÄGĠCGCCĊTGĞTGTCCCAAÄĠĊĊCTCAŤĊĂŬ 260 GlyValSerLeumetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPheTyrAla 279 111:::	<pre>930 ArCATCAGGTFCTFCTFCTCTCTCGGCCGCCCCTCATCATGGACAGGCGGGGAAAA 889 320 LeuteuteuvalteuserGlyvalvalwalwetvalpheSerThrSerAlaGhcGadaGaAAA 889 320 LeuteuteuvalteuserGlyvalvalvalwetvalpheSerThrSerAlaGhcGadaGaAAA 889 340 PheLysteuThrGlnGlyGlyVarSerGarGGTrTrCaGCATGAGGCCTTTGGTACCTAC 1049 340 PheLysteuThrGlnGlyGlyClyAsnSerSerHisValAlaIserAlaProVal 359 111111111111111111111111111111111111</pre>	<pre>> error and if i = i = i = i = i = i = i = i = i =</pre>	<pre>420 MetAlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGly 439 [</pre>	<pre>460 ProGluThrLysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg 477 11 </pre>
40 40 40 40 40 40 40 40 40 40 40 40 40 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20 20 20 20 20 br>20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2	ප හි පු හි පි හි	6 6 6 6 6	A A A	QY Db RESULT 7 RNO24593E LOCUS

ON Rattus norvegicus mRNA for glucose transporter (GLUTX1 gene). M AJ245935.1 GT:7018604 AJ245935.1 GT:7018604 glucose transporter; GLUTX1 gene. Rattus norvegicus (Norway rat) SM Rattus norvegicus (Norway rat) Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Eutheleostomi; Mammlia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus		<pre>100/1487 100/1487 2 (bases 1 to 2087) 8 Ibberson/M.R. 9 Direct Submission 1 Submitted (02-SEP-1999) Ibberson M.R., Institute of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, Lausanne, CH-1005, SWITZERAND</pre>	e rce	<pre>301466 Codon_start=1 /product="glucose transporter" /product="glucose transporter" /product="glucose transporter" /product="glucose transporter" /product="glucose transporter" /product="glucose transporter" /db_rref="gl:701865" /db_rref="gl:701865" /db_rref="glicitorpass" /db_rref="gli</pre>	LSVLFTLTFVPETKGRTLEQITAHFEGR"	<pre>ment Scores: 3.51e-146 Length: 2087 No.: 3.51e-146 Length: 2087 in 2162.50 Marches: 408 in Similarity: 92.26\$ Conservative: 33 Local Similarity: 88.36\$ Mismatches: 36 reach: 10 Gaps: 1 </pre>	86-954A-1 (1-477) x RNO245935 (1-2087)	1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlyGsrAla 20 :::: ::::	21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaLeuGlyProLeuSerPhe 40 	41 GlypheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro 60
DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM	REFERENCE AUTHORS TITLE JOURNAL MEDLINE	FUBMEL REFERENCE AUTHORS TITLE JOURNAL	FEATURES sourc gene	C C C	ORIGIN	Alignment Pred. No.: Score: Percent Si Best Local Query Matc DB:	88-60-SU	vo do	VO da	ନ୍ଦୁ ନୁ ଜୁନ୍ଦୁ କୁ

Qy 440 AlaPheTrpLeuAlaSerAlaPheC Db 1350 GCCTTCTGGCTCACCGCTGCCTTCT Qy 460 ProGluThrLysGlyLysThrLeuG Db 1410 CCTGGGACTAAAGGCAGGACTCTGC	RESULT 8 MMU17802 MMU17802 149 LOCUS MMU17802 149 DEFINITION MUS musculus mRNA for glucc		OKGANISM MUS musculus Eukaryota; Metazoa; Chordat Mammalia; Eutheria; Rodenti REFERENCE	AUTHORS DUGGE/H., SCHURMENT, A. BAL TITLE GLUT8, a novel member of th with glucose transport acti JOUNNAL J. Biol. Chem. 275 (21), 16	A D D X	L Submitted L Submitted Toxicolog Aachen, F	FEATURES LOCATION/QUALITIET source 11490 /organism="Mus mus /mol_type="muxA"	υ	CUS 261408" /gene="GLUT8" /codon_start=1 /product="glucose	/db.zref="d1:7682 /db_zref="d1:7682 /db_zref="GOA:0912 /db_zref="SWIS5"	CLTARELATON="MSPL GYSSPAIPSLRRTAPPAL CTVPFVTGFAUTTAREN CLUMVYTGILLAYVAGW	MAALRELWGSEGGMEEPF MFYANSIFEEAKFKDSSL SAFGTYFKLTQSLPSNSS PMLLMSEIFPLHVKGVAT	N SVLFTLTVVPE Iment Scores:	Pred. No.: 4.196-146 Score: 2159.00 Percent Similarity: 92.47% Best Local Similarity: 86.19%	Query Match: 87.87% DB: 10 US-09-886-954A-1 (1-477) x MMU17802 (1
AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLySLeuSerLeu 10 	<pre>330 CIGULUCGACCUICUTCGIGACCUGUTTIGCIGICATCACCGGGGCCCGGGATIGIG 389 121 TrpMetLeuLeuClyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal 140 121 [</pre>	<pre>141 AlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160 141 </pre>	<pre>161 ValGinLeuMetValValValValGiyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGlu 180 161 </pre>	<pre>181 TrpArgTrpLeuAlaValleuGlyCysValProProSerLeuMetLeuLeuLeuMetCys 200 181 [</pre>	<pre>201 Phemet ProgluthrProArgPheLewieuthrG1nHisArgArgG1nG1uAlaMetAla 220</pre>	<pre>221 AlaLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspFroProIleGlyAlaGlu 240 111111111111111111111111111111111111</pre>	241GINSerPheHisLeulaleuleuleuleuleuleuleuleuleuleuleuleuleul	<pre>260 GlyValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnalavalMetPheTyrala 279 260 GlyValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnalwetPheTyrala 279 810 GGCATTFIGCCTCATGGTCTTCCAGCAGCGGCGCTCAAGGGGGTCAAGGCCATCATGTTCTATGCC 869</pre>	<pre>280 GluThrIlePheGluGluAlaIvsPheLysAspSerSerLeuAlaSerValValValGly 299</pre>	<pre>300 ValleGInValLeuPheThrAlaValAlaValAleuIleMetAspArgAlaGIyArgArg 319</pre>	320 LeuLeuLeuValLeuSerGlyValValWatValPheSerThrSerAlaPheGlyAlaTyr 339 	<pre>340 PheLysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlalleSerAlaProVal 359 340 PheLysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlalleSerAlaProVal 359 1050 TTCAAACTGACCCAGGAGTGGCCCCAGCAACTCCTCCATGTAGGCCTCTGGTGCCCATC 1109</pre>	<pre>360 SeralaGInProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCys 379</pre>	380 LeuPhelleAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGlu 399 	<pre>400 IlePheProLeuHisValLyG]yValAlaThrGlyIleCysValLeuThrAsnTrpLeu 419 11111111111111111111111111111111111</pre>
V d V d	a o a	Q PP	Q d	Q d	QY Db	Q DP	Q d	Q dq	Q 4	VO da	QY Db	Q DP Q	V Pb	QY DP	QY dq

us-09-886-954a-1.rge

Tue Sep 28 09:09:39 2004

•

.

Qy 44	440 AlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysVal 459
Db 1350	0 GCTTCTGGCTCCCGCTCCTCTGTATCCTCGGCGTCTTTTCACGTCACCTTTGTC 1409
QY 460	0 ProGluThrLysGlyLysThrLeuGluGluIleThrAlaHisPheGluGlyArg 477
Db 1410	
RESULT 8 MMU17802 LOCUS DEFINITION DEFINITION ACCESSION VERSION VERSION SOURCE SOURCE CDCANTEM	MMU17802 1490 bp mRNA linear ROD 13-MAY-2000 Mus musculus mRNA for glucose transporter 8 (GLUT8 gene). Y17802 Y17802 Ylose transporter 8 (GLUT8 gene). Mus musculus (house mouse)
	<pre>ukarroccai, Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 1 Deege,H., Schurmann,A., Bahrenberg,G., Brauers,A. and Joost,H.G. GUUT8, a novel member of the sugar transport facilitator family</pre>
	with glucose transport activity J. Biol. Chem. 275 (21), 16275-16280 (2000) 2028667
FUBMED REFERENCE AUTHORS TITLE JOURNAL	. Joost. Institute of
	ersity Aachen, Wer
FEATURES source	
	/organism="Mus musculus" /mol_type="mRNA" /db_rref="taxon:10090" /tissue type="testis"
gene	
CDS	/ 55115 - 52010 26 1459 / 66ne= 1459
	/codon_state=1 /product="dlucose transporter 8" /protein_id="CABB9815.1" /db_zrefe="G1:768220"
	/db_xref="GOA:09JIF3" /db_xref="SNISS-PROT":09JIF3" /+r2inal-arkina-"BRUSS-PROT":09JIF3"
	O'SSEPALFSLERFURDERLEUGUNGGERLEUGUNGERSEENEN FUNGENEN FUNGENEUEREN GENEU O'SSEPALFSLERFURDERLEUGUNGASWEGAVUTLGAAGGILGGMLDRAGRKLSLLL CTVERFURGEAUTTAARDWALLGGRLLFGLEGCUVASLVARVARENEEEEEEEEE
	VZLARLAFLARENV VIGI LIJUVANAGNA LIMAKNANAV VAGU ALAKAKANA VAGU ALAKUANANA VAGU ALAKUANA VAGU ALAKUANA VAGU ALAKANA VAGU A VAGU ANAKANA VAGU ALAKANA
ORIGIN	
Alignment Scores: Pred. No.: Score: Percent Similarity: Best Local Similarity Query Match: DB:	: 4.190-146 2159.00 52:47% 86.19% arity: 86.19% 10.87%
US-09-886-954A-1	54A-1 (1-477) x MMU17802 (1-1490)

à g

δ d

. . .

Page 9

-
0
00
Ň
•••
σ
e
σ
0
••
σ
ö
<u> </u>
0
-
8
8
-
58 78
58 78
58 78
ep 28 -
58 78
ep 28 -
Sep 28
Sep 28
Sep 28
Sep 28
ep 28 -

us-09-886-954a-1.rge

21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 40 [81 AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeu 100 		1 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal 14 1 111111111111111111111111111111111111	1 AlaF 6 GCAC	1 ValG	40	201 PheMetProGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAla 220 :::	221 AlaLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspProFroIleGlyAlgGlu 240 :::	241GINSERPHEHISLEUALALEUARGGINPROGIYILETYLLYSPROPHEILEILE 259 	3	<pre>280 GluThrIlePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValValGly 299 </pre>	00 ValileGlnValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArg 31 :::	26 ATAATCCAGGTCCTGTTCACTGCTGGCGGCCCTCATCATGGACGAGGGCGAGGGCGAGGGCGAGGGCGAGGGCGAGGGCGAGGGCGAGGGGGG	320 LeuLeuLeuValLeuSerGlyValValValPheSerThrSerAlaPheGlyAlaTyr 339 	LeuThrGInGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaProVal 	60 SerAlaGInProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCys 379 :::: :::	3 GCGGCGGAGCCTGTGGATGTCCAAGTGGGACT 0 LeuPheIleAlaGlyPheAlaValGlyTrpGl	
Q dd	Q P	V P	Q A	Q Pp	yo du	QY DD	νς Δ	AQ QY	A A	oy Q	QY Db	QY Db	AQ QU	QY	đ	QV dU	AQ da	Š	a ò	

•

Db 11	1163 CTCTTCA	TTGCTGGCTTTGCGGTGGC	CTCTTCATTGCTGGCTTGCGGTGGGCTGGGGACCCATCCCCTGGCTCCTCATGTCAGAG 1222
		roLeuHisValLysGlyVe	<pre>IlePheProLeuHisValLySGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeu 419</pre>
Db 12	1223 Arcricc	crerecarercadeeren	GCTACCGGCATCTGTGTCCTCACCAACTGGTTC 1282
Qy 4 Db 12	420 MetAlaP 1283 ATGGCCT	<pre>>heteuValThrLysGluPt CTTCTAGTGTGCCAAAGAGTT</pre>	MetalaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGly 439
QY 4	440 AlaPher	rpLeuAlaSerAlaPheC	<pre>AlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysVal 459 </pre>
Db 13	1343 GCCTTCT	:::	CTTCTGGCTCACGCTGCCTTCTGGCGCTCTAGGGTGCCTATTCACACTGACGGTTGTC 1402
		hrbysGlyLysThrLeuG]	77
Db 14	1403 CCTGAGA	ICTAAAGGCAGGACTCTGG	ACAAGTCACAGCCCATTTCGAGGGACGA 1456
RESULT 9 AF232061 LOCUS DEFINITION ACCESSION VERVEDED	AF232061 Mus musculus AF232061 AF232061.1 G	llus glucose transporter 1 GI:8671757	bp mRNA linear ROD 23-JUN-2000 rter GLUT8 mRNA, complete cds.
SOURCE	Mus musculus Mus musculus	s (house	
	Eukaryoca; Mammalia; E 1 (bases 1	aryoca; metazoa; unorgata; malia; Butheria; Rođentia; (bases 1 to 1843)	; craniata; vertebrata; Euteleoscomi; ; Sciurognathi; Muridae; Murinae; Mus.
S	Carayanno McKnight, GLUT8 is	Carayannopoulos,M.O., Chi,M.M., Cui,Y., Pings McKnight,R.A., Mueckler,M., Devaskar,S.U. and GUUTB is a glucose transporter responsible fo	M., Cui,Y., Pingsterhaus,J.M., Devaskar,S.U. and Moley,K.H. er responsible for insulin-stimulated
JOURNAL MEDLINE PHEMED	glucose u Proc. Nat 20319023	prake in the blastc l. Acad. Sci. U.S.A	cyst . 97 (13), 7313-7318 (2000)
	2 (bases Moley,K.H	: 1 to 1843) 1., Carayannopoulos,	M.O. and Cui,Y.
TITLE JOURNAL	Direct Su Submitted	bmission (07-FEB-2000) OB/G	yn, Washington University, 4566 Scott
FEATURES	Ave, St.	Louis, MO 63110, US Location/Qualifiers	A
source		11843 /organism="Mus musc	ulus"
		/mol_type="mRNA" /strain="129"	
5,11112		/db_xref="taxon:100	n06
CDS	-	491482	
		/codon_start=1 /nrodurt="m]urose t	ranchorter (21.1177.8"
		/protein_id="AAF78366.1" /protein_id="AAF78366.1"	
		/translation="MSPED	/uxrer="G1;88/1/38" /translation="MSPEDPQETQPLLRPPEARTPRGRRVFLASFAAALGPLSFGFAL
		GYSSPAIPSLRRTAPPALR CTVPFVTGFAVITAARDVW	GYSSPAIPSLRRTAPPALRLGDNAASWFGAVYTLGAAAGGILGGWLLDRSGRKLSLLL CTVPFVTGFAVITAARDVWMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGSC
		VQLMVVTGILLAYVAGWVL MAALRFLWGSEEGWEEPPV	VQLMVVTGI LLAYVAGWVLEMRMLAVLGCVPPTLMLLLMCYMPETPRFLLTQHQYQEA MAALRFLMGSEEGWRRPPVGAEHOGPOLALLRRPGTYKPLTTGI STMVPOOLSGYNAT
		MFYANSIFEEAKFKDSSLA	METANCE FEERER FOR START STA
		PALEMENTS I FALLUSSING	VGLVFIAAEFVUVQVGLAWLAVGSMCLFIAGFAVGWGFI ICVLTNWFMAFLVTKEFSSVMEMLRPYGAFWLTAAFCAL
3 ' UTR		SVLFTLTVVPETKGRTLEQVTAHFEGR" 14831843	VTAHFEGR"
ORIGIN			
Alignment S. Pred. No.:	cores:	8.88e-146	Length: 1843
Score:		2156.00	
Percent Similarity: Best Local Similarity:	ılarıty: Similarity	92.47% 85.98% 81.58%	Conservative: 31 Mismatches: 34
Query Matcn		87.75%	Indels: 2

-

.

us-09-886-954a-1.rge

11
Page

							_	_	_	_	_	_					œ	_ 00	_
		20	: 40 : 168	60 228	80 0	34	12	140	160 528	180 588	200	220	240	259 828	279 888	29 44	31.01	339	35
		erAla GGACT	rPhe CTTC	ProPro			spVal ATGTG	euVal PAGTG	erCys CCTGT	euGlu PAGAG	st Cys GTGC	etAla CGCT	aGlu TGAG	elle 	rAla 		rgArg GAAGG	laTyr ccTAC	oVa
		31yS 3CCA	ProLeuSer	aAlaPr		LeuSe CTGAC	U	SerLeuVa] TCACTAGT(SE	ValLev 5GTCCT2	LeuMe CTCAT	AlaMet SCCAT	Glyalaglu GGGGCTGAG	Pheil CTCAT	Phery TTCTA'] уд 960	lya GTA	laP
		oGly GGAA	YPro 	gAla 		gLysLeu CAAGCTG	aAla 3GCC	CGCC	GCTC	Y ^T rp' CTGGG	uLeu GCTG	GlnGluAls CAGGAGGCC	oile(::: TGTT	SProl	alMet] :: TCATG		gAla(AGCA	аРhe(СТТТС	Ser
		IGLYProPr SCGGCCACC	aPheAlaAlaAlaLeuGlyP: 	erProAlaIleProSerLeuGlnArgAl ::: 	erTrpPheGlyAlaValValThrLeu(YTrpLeuValAspArgAlaGlyArc ::: ::: CTG6CTCCTGGACCGTTCAGGGCGC	alileThralaAlaG rcArcAccGcGGGccc	euLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaS 	eAlaTyrProAlaValArgGlyLeuLeuGl 	GlyTleLeuLeuAlaTyrLeuAlaGlyTr) 	rleuMetLeuLeuLeuMe : ccrcArgcrGcrGcrCAr	ArgG1	ProProIleG	Hi sLeuAlaLeuLeuArgGlnProGlyIleTyrLysPro ::: CAGCTGGCCTGGTGAGGGGCCCTGGCATCTACAAGCCC			lemetAspArgAlaG rCATGGACAGAGCAG	SerAla AGTGCC	
2		uG1yi	aAla CGCT	rLeu 	yAla' 	gAla(::: TTCA	LILLe CATC	aCyst CTGC	CCGA(rLeu ::: TGTG	rLeul : :CCTC	roArgPheLeuLeuThrG1nH1sArgArg(:: CACGTTTTCTCCTCACTCAACACCAGTAC	uAspl ::: AGAGG	VIle [CATC	GlnGlnLeuSerGlyValAsnAla' dGCAGCTGTCAGGGGGTCAATGCT	rLeuAlaSe sccrggccro	eMet.	alPheSerThrse rGTTCAGTATGA(svalAl
		roLeuLeuG	AlaAl 5cccc	prose	PheG1	AspAr 3ACCG	AlaVa 5CTGT	CTTGC	Alava SCTGT	AlaTy sccta	ProProSer	al nHi ACA	rrpG1	ProGl	31 y Va 	SerSe AGCAG	Leulle CTCAT(Phese rTCAG	SerHi
	<u> </u>	벌드었	aPhe <i>l</i> : CTTC(allel + Carco	глас 1111 1112	uVal/ ::: CCTG(YPheAlaVal CTTTGCTGTC	rGlyI CGGC(rPro/	uLeu CCTGC	1Prol GCCC	uThro CACTO	nG1 y GGGC1	gGlnI ::: GCGC(uSer(GTCAC	sAsp(GGACI	aAlaI GGCC(2-6	JSe
Gaps	1843	TCA	rgArgValPheLeuAlaAl, :: GCCGGGTCTTCCTCGCTTC	roAl	lase sccrc	TrpLe	ProPhevalAlaGlyP	euTh TCAC	NaTY SCCTA	lleLe TCCT	TrpLeuAlavalLeuGlyCysValP- TGGCTGGCCGTGCTGGGCTGTGTGC	euLe 	GluGlnGlyTrpGluAsp ::: ::: GAGGAGGCTGGGAAGAG	euàr TGAG	lnLe AGCT	hr11ePheGluGluAlaLysPheLysAspSerSe. ::	alalaala TGGCGGCC	ValMet ::: ATCATC	Ϋ́Α
	1 (1-	uGluTh : GGAGAQ	eLeu ² CCTCG	rser 	4-0	5-8	eValA CGTGA	gLeuI CCTCC	uIle ² AATCG	lG1y1 rggCP	101 yC	aPhel TTTC	VSerG CTCTG	aLeuI	eg1ng 	aLysF CAAGT	rAlaVe rGCTG1	vvalv : rgrg2	yProGl
	3206	rog]	alPh TCTT	YrSe: ACAGG	spal: ACAA	euG1 TGGG	roPhe CCTT	1yAr GCCG	erGluIle CGGAAATC	valvalo GTCACTC	alle † TGCT(roAr CACG	rpG1	euAla TGGC	laPhe(TCTTC(lual AGGC	heTh: TCAC	serGlyVal rCGGGTGTG	nGlyGl
0	X AF2	luAspP BAGGACC	aArgV ccccc	aLeuGlyTyrSerSe scridgerpacer	rgteuàspàspàla sccrccgagacaat	5 YValLeuG YG Y ::: 56CaTaCTGGGCGGC	erValPr :: ccGTGcC	IG1YG 1011	ProValTyrIleSe	:ValV 3GTTG	AlaV	rogluThrPr CCGAGACCCC	uArgPheLeuTrpGlySer(GCGCTTCCTGTGGGGGCTCT	eHisL CCAGC	Meta NTGG	eG1uG CGAGG	LeuPheThra CTGTTCACTG	lleuse CTTGTC	GlnG
10	¢ (11	9 <u></u>	961 yArd CGGCCGC	AlaLet GCGCTC	rgter GCCTC	<u> </u>	uCysSer ::: CTGCACC	euLeu TGCTQ	alTy TTAC	euMet TGATC	rpLeu GCTG	roGlu CCGAC	rgPhe GCTTC	erPheHis GCTTCCA(erLeu	lePhe rcrrc	lnVa] AGGTC	euVa] TGGC(euThr
	(1-4	t Thr ::: GAGTO	7-0	Phe TTC	oro CTG	222	uLeuC GCTCT	TEMETLE GGATGC	ProV	lGlnLeuMet ValV 3CAGCTGATGGTTG	rpArgT GGCGCT0	PheMetPr ::: TACATGCC	LeuA: TTGC	GlnS CAGG	lyValSerLeuMetAla ::: GCATTTCCCTCATGGTC	Thri ::: AGCA	llleGlnVall :: FAATCCAGGTCC	LeuLeuLeuVa CTGCTCCTGGC	LysL
	4A-1	1 Met 9 ATG	1 Pro#	1 G1y1 9 GGC			1 Leu 9 TTG	нн	1 AlaP: 9 GCACC	1 Val(9 GTG(1 Trp 0 TGG		1 AlaLeu 9 GCCTTC	CAC	<u>ო</u> -დ	5 4	0 Val ::: 9 ATA	o Leu	0 Phe
	6-954	4	105	41	5 6	00 00	101 345	121 409	141 469	161	181 585	201 649	221	241 769	260 829		300 949	320	340
	9-88																		
DB:	0-SU	VQ da	vo da	VO da	vo da	vo da	VQ qq	QV DP	QY Db	yo da	QV Db	QV Db	vo da	vo du	YO da	VQ dq	DP ON	A A	δ

US-09-886-954A-1 (1-477) x AX076671 (1-2072)

٠

360 SerAlaGInProValAspAlaSerValGIyLeuAlaTrpLeuAlaValGIySerMetCys 379 309 GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	40 AlabheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysVal 459 41 ++++++++++++++++++++++++++++++++++++	<pre>MWI245936 2072 bp mRNA linear ROD 10-FEB-2000 Memosculus mrNA for glucose transporter (GLUTX1 gene). </pre>
2 4 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4		RESULT 11 MMU245936 DEFINITION ACCESSION VERKSION VERKSION VERKSION REFERENCE AUTHORS JOURNEL MEDLINE REFERENCE AUTHORS TITLE JOURNAL JOURNAL SOURCE SOURCE CDS CDS

.

us-09-886-954a-1.rge

NICIO

9 du	:::
QY 3	320 LeuLeuValLeuSerGlyValValValPheSerThrSerAlaPheGlyAlaTyr 339
16 qU	81
QY 3 Db 10	340 PheLysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaProVal 359
оу З	60 SerAlaGInProValAspAlaSerValGIyLeuAlaTrpLeuAlaValG1ySerMetCys 379
Ч	secocceaseccreaseccaseccaseccresccrescrescrescrescrescrescrescres
QY 3	380 LeuphelleAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGlu 399
Db 11:	58 CTCTTCATTGCTGGCTTTGCGGGGGGGGGGGGGCCCGTCCCTGGCTCGCTCGTCG
QY 4	400 IlePheProLeuHisValLySGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeu 419
Db 12	218 ATCTTCCCTCTGCATGTCAGGGTGGGCTACCGGCATCTGTGTTTILIIIIIIIIIIIIIIIIIIIIIIIIIIIII
QY 4	420 MetAlaPheleuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGly 439
Db 12	1278 ATGGCCTTTCTAGTGACCAAAGAGTTCAACAGCGCTCATGGAGAATGCTCAGGGCT 1337
QY 4 Db 13	440 AlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysVal 459 111111111111111111111111111111111111
1	60 ProGluthrLysGlyLysThrLeuGluGlutleThrAlaHisPheGluGlyLyarg 477
Ч	98 CCTGAGACTAAAGGCAGGACTCTGGAACAAGTCACACGCCCATTTCGAGGGAGG
RESULT 12 AB033418 LOCUS DEFINITION	AB033418 2189 bp mRNA linear ROD 11-AFR-2000 Agtus norvegicus glut8 mRNA for glucose transporter 8, complete
ACCESSION VERSION	
KEYWORDS SOURCE OPCANT SW	Aboute transporter 8. Ratus norregicus (Norway rat)
WE THREE NO	R AALUS JOLVEGLOUS Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae;
REFERENCE AUTHORS	nacuus. 1 (bases 1 to 2189) 15hibashi,K.
TITLE JOURNAL	Molecular cloning of a new putative glucose transporter Published Only in DataBase (2000)
REFERENCE AUTHORS	2 (bases 1 to 2189) Ishibashi,K.
TITLE JOIRNAL	loodaal cadidaal Cabool
	cochigi 329-0498, Japan Sochigi 329-0498, Japan 58-7326,
FEATURES	Fax:81-285-44-5541) Location/Qualifiers
Ц	12189 /
	/organism="kattus norvegicus" /mol_type="mRNA"
	/db_xref="taxon:10116" /clone_lib="testis"
gene	I2189 /gene="glut8"
CDS	1091548 /rene="relives"
	/pote="Glut8 has 12 transmembrane segments"
	/codon_start=1 /product="glucose transporter 8"
	/protein_id="BAA94383.1"

/db xref="G1:7592744" /translation="MSPEDPOETOFLLRSPGARAPGGRRVFLATFAALGPLSFGFAL LCTVPFVTGFAVITAARDVMMLLGGRLLTGLAAAGGARVJGGWLLBAGRKLSLL LCTVPFVTGFAVITAARDVMMLLGGRLLTGLACGVASLVAPVYISEIAYPAVRGLLGS CVOLMVTGFLLAYVAGNVLENRWLAVLGCVPFTLMLLLMCTNPETERFLLTQHQYGE AMAALRFLMGSEEGWBEPPVGAEHQGFQLAMLRRPGVHKPLIIGICLMVFQQLSGVNA MSACTYTFREAKFKDSLSLASYTVGLIPQLFTQULFTVAALIMDRAGRKLLLAGGVNA MSAFGTFKLTGQSEBNSSHVGLLVPTSAEFADDVHLGLAMLAVGSRGLLFTAGFAVGMF TLSVLFTLTFVPETKGVATGVCVLTNWFMFLVTKEFNSIMBILRPYGAFWLTAAFC ILSVLFTLTFVPETKGRTLEQITAHFBGR"

ORIGIN

••	
D	
0	
ਸ	
SCO:	
0	
S	
ų	
F	
E	
5	
6	,
· H	
н	
4	I

2189	407	33	37	2	5	
Length:	Matches:	Conservative:	Mismatches:	Indels:	Gaps:	
5.7e-145	2146.00	91.86%	84.97%	87.34%	10	
Pred. No.:	Score:	Percent Similarity:	Best Local Similarity:	Query Match:	DB:	

:80	10 Gaps: 2	
3-60-SU		
δy	<pre>I MetThrProGluAspFroGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla</pre>	Ala 20
дu	109 ATGTCGCCCGAGGACCCCCAGGAAACACAGGCCGCTGTTTTTCCGGTCGGGGGGGCCCAG	GCT 168
δy	21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe	Phe 40
qц	169 CCCGGCGGCGCCGGGGTCTTCCTTGCCACCTTCGCCGCCCGC	TTC 228
Ś	41 GlyPheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro	Pro 60
дQ	229 GGCTTCGCGCTTGGCTACGCCTCCCCCCCCCCCGCCTGCCGCGCGCG	CCT 288
οy	61 AlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValValThrLeuGlyAla	Ala 80
da	289 GCCCTACGCTCGGAGACACTGCGGCCCTCCTGGTTCGGGGCCGTCGTGACCCTGGG	GCT 348
oy	81 AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSer 	Ser 99
дq	349 GCGCCCAGGGGCCCTGCTGCGGCCGGGCTCCTGCACCGTGCGGGGGGCGCAAGCT	AGC 408
QY	100 LeuLeuLeuCysSerValProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAsp	Asp 119
qu	409 CTCCTGCTCGCCCGTGCCCTTCGTGACCGGCTTTGCTGTCATCACCGGGCCCG	 GAT 468
δ	120 ValTrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeu	Leu 139
qа	469 GTGTGGTGCTCGTGCTCCTCTCTCTCGGCCTAGCCTGGGAGTCGCCTC	TTA 528
QY	140 ValAlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySer	Ser 159
qu	529 GTGGCACCGGTCTATATCTCGGGAAATCGCCTACCCAGCGTTCGAGGACTGCTCGG	TCC 588
QY	160 CysValGInLeuMetValValValGIyIleLeuLeuAlaTyrLeuAlaGIyTrDValLeu	Leu 179
qa	589 TGTGTGCAGCTGATGCTTGTCACTGGCCATCCTTGGCCTAGCTGGCTG	CTA 648
ò	180 GluTrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMet	Met 199
дD	649 GAATGGCGCTGGTTGGCTGGCTGGCTGGCGCTGTGTGCTGCTG	ATG 708
QY	200 CysPheMetProGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMet	Met 219
qŭ	709 TGCTACATGCCCGGGGGCCCCACGCTTCCTCTCTGTGCCAACACCCAGTACCAGGAGGC	ATG 768
QY	220 AlaAlaLeuArgPheLeuTrpGlySerGluGInGlyTrpGluAspProFroIleGlyAla	Ala 239
дD	769 GCTGCCTGCGCTTCCTGTGGGGGCTCTGAGGAGGGCTGGGAAGAGCCCCCTGTTGG	GCT 828
QY	240 GluGlnSerPheHisLeuLeuLeuLeuLeuAgGlnProGlyIleTyrLysProPheIle	ile 258
qa	829 GAGCACCAGGGCTTCCAGCTATGCTGAGGGGCCCCTGGTGTCTCCACAAGCCCCT	ATC 888

۲

<pre>259 IleGlyValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPheTyr 278 259 ::: </pre>	279 AlaGluThrIlePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValValVal 298 	<pre>glyvalleGlnvaleuPheTbrAlavalAlaLeuTleMetAspArgAlaGlyArg 318 l ::: </pre>	319 069	<pre>339 TyrPheLysteuThrGlnGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaPro 358</pre>	359 ValSerAlaGInProValAspAlaSerValGIyLeuAlaTrpLeuAlaValGIySerMet 378 ::: :::	379 CysteupheilealaGlyphealaValGlyTrpGlyprofleProTrpLeuLeuMetSer 398 	399 GluflePheBroLeuHisValLySGlyValAlaThrGlyIleCySValLeuThrAsnTrp 418 :::	419 LeuMetAlapheLeuValThrLysGlupheSerSerLeuMetGluValLeuArgProTyr 438 ::: :::	439 GlyAlaPheTrDLeuAlaSerAlaPheCysIlePheSerValLeuPheTrLeuPheCys 458 1429 GGGCCTTCTGGCTCGCCTGCTTGTATCCTCAGCGTCCTTTTCACGCTCACCTTT 1488	459 ValProGluThrLysGlyLysThrLeuGluGluGluArg 477 11 ::::	AX191507 AX191507 Sequence 29 from Patent W00149728. Sequence 29 from Patent W00149728. AX191507 GI:15209697 Homo sapiens (human) Homo sapiens (homo sapiens" (homo sapiens") (homo sapiens" (homo sapiens") (homo sapiens" (homo sapiens") (homo sapiens" (homo sapiens") (homo sapiens" (homo sapiens") (homo sapie
QY dd	QY 40	k k	QV DD	QV dQ	QY Db	Qy da	VO PP	QY Db	Qy Db	Qy Db	RESULT 13 AX191507 LOCUS DEFINITION ACCESSION VERSION VERSION VERSION ORGANISM AUTHORS JOURCE AUTHORS TITLE FEATURES FEATURES SOURCE CDS

-

•

us-09-886-954a-1.rge

/translation="MTPEDPEETQPL/GPPGGSAPRGRRVFLAAFAALGPLSFGFAL GYSSPAIPSLQRAPPARLDDAASWFGAVVTLGAAAGGVLGGWLVDRAGRKLSLLL CSVPFVAGFAVITAAQDVWMLLGGRLLITGLACGVASLVAPVYISELAYPAVRGLLGSC VQLMVVVGILLAYLAGWVLEWRWLAVLGCVPPSLMLLLMCFMPETPRFLLTQHRRQEA APGLVRCGHGVQHECLRRLLQADPGWPWQLLARGHLGACLCTAC"	<pre>mment Scores: . No.: 1.09e-102 Length: 1461 e: 1554.50 Matches: 324 ent Similarity: 67.85% Conservative: 1 : Local Similarity: 67.64% Mismatches: 1 y Match: 63.27% Indels: 153 6 Gaps: 2</pre>	9-886-954A-1 (1-477) x AX191507 (1-1461)	MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 20	bi ATGACGCCCGAGGCACCCAGGCGAACCCAGCCGCCCTCTCGGGGCCGGCGCGCG 120 21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 40		41 GlyPheAlaleuGlyTyrSerSerFroAlaIleProSerLeuGlnArgAlaAlaProPro 60 	- tm	CGCCTCCTGGTTCGGGGCT	81 AlaAlaGiyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeu 100 111111111111111111111111111111111111	г 	361 TTGCTGTGCGTGCCCTTCGTGGCCGGCTTTGCCGCGCGCGCGCGCGCGCGCGGGCGTG 420	1 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal	UGANIGCTGCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	<pre>44 ALARTOVALIYTILSSETGUILEALATYFFOALAVALAYGGLYLEULEUGLYSETCYS 160 481 GCCCGGGTCTACATCTCCGAAATCGCCTACCCAGCAAGTCCGGGGGGTTGCTCGGCTCCTGT 540</pre>	18	9 H	601 TGGCGCTGGCTGGCTGCGCGCGCGCGCCCCCCCCCCCC	201 PheMetFroGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAla-MetAl 220	661 TTCATGCCCGAGACCCCGCGCTTCCTGCTGACTCAGCCACAGGGGCGGCGGGGGGGCTGCTC 718	220 aAlaLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspFroProIleGlyAlaGl 240	718 718	240 uGlnSerPheHisLeuAlaLeuLeuArgGlnProGlyIleTyrLysProPheIleIleG1 260	718 718	260 yValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPheTyrAlaGl 280
ORIGIN	ឲ្យ អូបូរ	-886-	QY 21	an <i>k</i> o	Db 1	Qy Db	QY	Db 2	oy Db	QY 1	Db 3				QY 1		Db 6	QY 2	Db 6	QY 2	Db 7	QY 2	Db da	QY 2

80 uThrIlePheGluGluhlaLysPheLysAspSerSerLeuAlaSerValValValGlyVa 300	18	000 lIleGlnValLeuPheThrAlaValAlaAlaLeuIleMetAspÅrgAlaGlyArgArgLe 320	18	120 uLeuLeuValLeuSerGlyValValValPheSerThrSerAlaPheGlyAlaTyrPh 340 	40 eLysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlleSerAlaProValSe 36	15 CAAGCTGACCCAGGGCTGGCAACTCCTCGCACGTGGCCATCTCGGCGCCTGTCTC 834	60 rAlaGlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCysLe 380 111111111111111111111111111111111111	80 uPheileAlaGly-PheAlaValGlyTrpGlyProlleProTrpLeuLeuMetSerGluI 40 	95 CTTCATCGCCGGAGGTC	lephepro	911	20 etAlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyA 440	912CTCAGGCCCTAIGGAG 927	40	28 CCTTCTGGCTTGCCTCCGCTTTCTGCAT	<pre>60 roGluThrLysGlyLysThrLeuGluClnIleThrAlaHisPheGluGlyArg 477</pre>	<pre>AF321324 1012 bp mRNA linear MAM 02-JUL-2001 Bos taurus glucose transporter 8 (Glut8) mRNA, partial cds. AF321324.1 GI:14582715 AF321324.1 GI:14582715 Bos taurus (cow) Bos taurus (cow) Augustin, R., Navarrete-Santos, A. and Fischer, B. 1 (Bases 1 to 1012) Augustin, R., Navarrete-Santos, A. and Fischer, B. Augustin, R., Navarrete-Santos, A. and Cell Biology, Faculty of Magustin, R., Navarrete-Santos, A. and Fischer, B. Augustin, R., Navarrete-Santos, A. and Fischer, B. Augustin, R., Navarrete-Santos, A. and Fischer, B. Augustin, R., Navarrete-Santos, A. and Cell Biology, Faculty of Medicine, Martin Luther University Halle, Grosse Steinstraase 52, Augustin, R., Navarrete-Santos, A. Augustin, R., Navarrete, A. Augustin, R., Navarrete, A. Augustin, R., Navarrete, A. Augustin, A. Augustin, R. Augustin, R. Au</pre>
QY 2	Db 7	QY 3	7 7	QY 3 Db 7	QY 3	Db du	QY Db 8				6 qu	QY 4	Db du		Db 9	QY 4 Db 9	RESULT 14 4F321324 LOUD DEFINITION ACCESSION VERSION KEFWESION KEFWESION SOURCE ORGANISM TITLE JOURNAL JOURNAL JOURNAL FEATURES SOURCE Gene Gene CDS

•

-

us-09-886-954a-1.rge

Tue Sep 28 09:09:39 2004

٠

us-09-886-954a-1.rge

FEATURES FEATURES coursection misco origin predivent pre	<pre>Clone distribution: MGC clone distribution i through the I.M.A.G clone distribution i Series: IRAK Plate: 104 Row: b Column: 18 This clone was selected for full length sequ passed the following selection criteria: Hex analysis, Similarity but not identity to pro location/Qualifiers 11929 (mol_type="mRNA" (mol_type="mRNA" /mol_type="mRNA") /tiene="mADA", for analysis, foldage" /tiene="mADA", for analysis, foldage" /tiene="mADA", for analysis, foldage"</pre>	<pre>//LIBUG_CYDG= 'MADLE DOGY, adult male" /lab_host="Wagano SJD adult male" /lab_host="Wagano SJD adult male" /lab_host="Nettons" / note="Vector: pME18S-FL3" / note="Vector: pME18S-FL3" / note="Vector: pME18S-FL3" / product="Unknown (protein for MGC:56364)" / product="Unknown" (protein for MGC:</pre>	/note="sugar_tr; Region: Sugar (and other) transporter" /db_xref="CDD:pfam00083"	Alignment Scores: Pred. No.: 2.85e-92 Length: 1929 Score: 1411.50 Matches: 282 Percent Similarity: 70.99% Conservative: 63 Best Local Similarity: 58.02% Mismatches: 122 Query Match: 57.45% Indels: 5 DB: 5 Gaps: 5	-954A	2 ThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAlaPro 21 197 ACAGAAGAGATAGATCCGAGCAAGAGCGATACCTGGATAAAGTT 241	<pre>22 ArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPheGly 41 ::::::: </pre>	42 PheAlaLeuGlyTyrSerSerFroAlaIleProSerLeuGlnArgAlaAlaProProAla 61 	<pre>62 ProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValThrLeuGlyAlaAla 81 52 ProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaAla 81 5362 CTGCAGCTCAGCGTAGAGGAAGCTTCCTGGTTCGGGTCAGCGATGACCATTGGTGCGGCT 421</pre>	82 AlaGiyGiyValLeuGiyGiyTrpLeuValAspArgAlaGiyArgLysLeuSerLeuLeu 101 	<pre>102 LeuCysserValProPheValAlaGlyPheAlaValIleThrAlaAlaAlaAgValTrp 121 102 LeuCysserValProPheValAlaGlyPheAlaValIleThrAlaAlaAlaAgValTrp 121 482 TTCTGTGCAATACCATCTTTGGGTTTACCACCACTATCGCTGCTCAGAACCACTGG 541</pre>	122 MetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysClyValAlaSerLeuValAla 141 	
	ĥ	ין א מאר ביד גרב גרב גרב גרב גרב גרב גרב גרב גרב גרב	ORIGIN	Alignment Sc Pred. No.: Score: Percent Simi Best Local S Query Match: DB:	-09-886	Db Db	QY du	QY Db	QY Db	QY Db	QY Db	QY Db	

	<pre>162 GInLeumerValValValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrp 181</pre>			· ·			294 108	5 SerValValValGlyValIIeGlnValLeuPheThrAlaValAlaAlaLeuTleMetAsp 314 ::: ::: 	<pre>5 ArgAlaGlyArgArgLeuLeuLeuValLeuSerGlyValValMetValPheSerThrSer ::: :::::: ::: </pre>		<pre>5 IleSerAlaProValSerAlaGlnProValAspAlaSerValGlyLeu ::: 2 GTGCTAACGACACCCATGGTCTTCTGGAAGATCAGCCCTCTGCAGACCTG</pre>	1 AlaTrpLeuAlaValGlySerMetCysLeuPheIleAlaGlyPheAlaValGlyTrpGly 390 :::	<pre>ProlleProTrpLeuLeuMetSerGlullePheProLeuHisValLySGlyValAlaThr 410 ::: </pre>	GlylleCysValLeuThrAsnTrpLeuMetAlaPheLeuValThrLyGluPheSerSer 430 :::	<pre>431 LeuMetGluValLeuArgProTyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePhe 450 453 [::: 453 CTCArGGATCGCTCAGCAGCAGCAGCAGCAGCATTTTGCATTTTGCATTCTCGGCACTACTTCTCAGCACCACTACTTCTGCACTACTTCTCAGCACCACTACTTCTGCACTACTACCACCACTACTACTACTACCACCACTACTACCACC</pre>	451 SerValLeuPheThrLeuPheCysValProGluThrLysGlyLysThrLeuGluGln11e 470 ::: :::: ::::	3 AATGTGGTCTTCAGGGCTTTCTTGTCCCTGAGACCAAAGGCCAAAACTCTGGAAGAGAATT 1 ThrAlaHisPheGluGlv 476	13 CAAGCTGGTTTTAAAGC
QY Db	ନ ପ	νς Db	QY Db	QY Db	yo da	Q AG	QY dD	QY Db	QY Db	VQ dq	VO PP	Q Dp	QY Db	QY Db	VQ dq	Q	du vo	đ

Search completed: September 28, 2004, 03:28:36 Job time : 4617 secs

•

Sep 28 09:09:40 2004 Tue

229, Appl 19, Appl 358, App 1685, Ap 1685, Ap 1685, Ap 109, App 19608, A

Sequence Sequence Sequence

Sequence Sequence

Sequence

Sequence Sequence

1862 2080

100.0

2457 2457

1655 1156 1461 789 2356

84.1 68.4 63.3 51.6

Sequence

33304 3330 3300 3330 3330 3330 3330 3330 3330 3330 3330 3330 333000 33300 33300 33300 33300 33300 33300 333000 33300 33300 33300 33300 333000 3330

39.0 39.0

2067.5 1679.5 1254.5 958.5 958.5 958.5 958.5 958.5 958.5 958.5

2487 2487 2487 2487 2696

39.0 39.0

39.0 29.1 28.6 28.6 28.6

> 716 702

2202 1797 2003 2049

1875 1953 1768

701.5 682

Sequence Sequence Sequence Sequence 220366, A 22236566, A 2656961, A 264061, A 264061, A 2001, A 2

sequence seq

5 US-10-115-831-137 US-10-168-651-28 US-10-168-651-28 US-10-168-531-28 US-10-169-395-29 US-10-169-395-19 US-10-169-395-19 US-10-169-395-19 US-10-169-395-19 US-10-172-118-1685 US-10-172-118-1685 US-10-425-114-2696 US-10-425-114-2696 US-10-425-114-245696 US-10-425-114-245696 US-10-425-114-24968 US-10-425-114-24968 US-10-425-114-24968 US-10-425-114-24968 US-10-425-114-24968 US-10-425-114-22342 US-10-425-114-22342 US-10-437-963-64291 US-10-437-963-74998 US-10-425-114-22342 US-10-437-963-74938 US-10-425-114-22342 US-10-425-114-22342 US-10-425-114-22342 US-10-425-114-22345 US-10-282-122A-07182 US-10-938-842A-1627 US-09-938-842A-1627 US-00-938-842A-1627 US-00-

24.6 24.6 24.5

1386 2045 2051 2051 2190 1419 1395 1395 1395 1395

604.5 604.5 604.5 603 598.5 593.5

150130 1785

27.8 27.1 26.0 25.3 24.8 24.8

666.5 639 620.5 609.5 607

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

- nucleic search, using frame_plus_p2n model OM protein

Run on:

September 28, 2004, 03:28:39 ; Search time 4236 Seconds (without alignments) 570.345 Million cell updates/sec

2457 1 MTPEDPEETQPLLGPPGGSA.....CVPETKGKTLEQITAHFEGR 477 US-09-886-954A-1 Perfect score: Sequence: Title:

BLOSUM62 Scoring table:

7.0 7.0 7.0 Xgapop 10.0 , Xgapext Ygapop 10.0 , Ygapext Fgapop 6.0 , Fgapext Delop 6.0 , Delext

3337386 seqs, 2532474682 residues Searched:

6674772 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Sequence 6734, Ap Sequence 6734, Ap Sequence 1627, Ap Sequence 1627, Ap Sequence 2331, Ap Sequence 2331, Ap Sequence 2331, Ap Sequence 2331, Ap

H

1359 1359 1473

593.5 591.5 587.5 584.5 584.5 583.5 583.5 583.5

22

1395

1473 1395 566 898 673 1338 915 915

Sequence + ... Sequence 1769, Ap

Sequence 507, App Sequence 1341, Ap Sequence 1341, Ap Sequence 248, App

US-10-342-887-1341 US-10-172-118-1341 US-10-172-118-1341 US-10-170-385-248

3915 3915

23.2 23.2 23.2

574.5 571 571 570.5 570.5 570.5 570.5

23.4 23.2

582 582 582 ALIGNMENTS

US-10-115-831-137

co-rutile sign with a second state of second state of second state

LENGTH: 1862

Description

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

£

Query Match Length DB

Score

No. Result

Sequence 79, Appl Sequence 35021, A Sequence 1769, Âp Sequence 96711, A

Command line parameters: -MODEL=frame+ p2n.model - DEV=x1p -MODEL=frame+ p2n.model - DEV=x1p -D=PublTshed Applications NA -QFMT=fastap -SUFFIX=rnp6.41.1647 -DB=PublTshed Applications NA -QFMT=fastap -SUFFIX=rnp6.41.NMATCH=0.1 -LOOPCL=0 -LOOPEXT=0 -UNITG=bits -START=1 -END=-1.MMTRIX=blosum62 -LOOPCL=0 -LOOPEXT=0 -UNITG=bits -START=1 -END=-1.MMTRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR SCORE=pct -THR MAX=100 -MAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092004 170634 13496 -NAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092004 170634 13496 -NAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092004 170634 13496 -NAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092004 170634 13496 -NAXEN=2000000000 -USER=US080954 @CGN 1 1 783 @rumat 27092004 170634 13496 -NAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092004 170634 13496 -NAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092004 170634 13496 -NAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092094 170634 13496 -NAXEN=2000000000 -USER=US0886954 @CGN 1 1 783 @rumat 27092094 170634 13496 -NAXEN=2000000000 -USER=US086954 @CGN 1 1 783 @rumat 27092094 170634 13496 -NAXEN=2000000000 -USER=US086954 @CGN 1 1 783 @rumat 27092094 17063 -13496 -NAXEN=2000000000 -USER=US086954 @CGN 1 1 783 @rumat 27092094 17063 -13496 -NAXEN=2000000000 -USER=US086954 @CGN 1 1 783 @rumat 27092094 17065 - 05000000 --SCAPCF - FARPEX=7 - YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -EGEPEXT=7 -

Database :

Tue Sep 28 09:09:40 2004

us-09-886-954a-1.rnpb

281 ThrTlePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValGlyVal 	<pre>964 CTCCTGGTCTTGGTGTGGTGGTGGTGGTGGTGGTGGCGGGGGG</pre>	QY 361 AlaGinEroVarghSepAlsSerValGIyLeuAlaThEuAlaUGYSetHetCySteu 380 Db 1084 GEAGGCCGTGTGAGGCGGGGGGGGGGGGGGGCGGGGGGGGGG		<pre>1264 GCCTTCUCGIGACCAAGGAGICAGCAGCUCALGGAGGCUCAAGGGCCLAAGGGCCLAAGGGGCCAAAGGAGC 441 PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheCysValPro 1324 TTCTGGCTTGGCTTCGGCTTTCTGGATCTTTGGATCGTTTGCTTTGGTTCGGGCCCCG 1324 TTCTGGCTTGGCTTCGGGTTTTGGATCTTTGGATCGTTTGGTCCCT</pre>	Qy 461 GuthriysGlyLysThrieuGluGinlieThrankisPheGluGiPArg 477 Db 1384 GAAACTAAAGGAAAGACTCTGGAACAAATCACGCCCATTTTGAGGGGCGGA 1434	ESULT 2 S-10-168-651-28 Sequence 28, Application US/1 Publication No. US20030171275 GENERAL INFORMATION:	<pre>p APPLICANT: INCTE GENOMICS, INC. APPLICANT: BAUGHN, Mariah R. APPLICANT: BURFORD, Neil APPLICANT: AU-YOUNG, Janice APPLICANT: LU, DYUNG Jaina M. APPLICANT: LU, DYUNG JAINA M.</pre>		APPLICANT: NOLIEN, JUGHILEI B. APPLICANT: GANDHI, Ameeni R. APPLICANT: TANG, Y. Tom APPLICANT: TANG, Y. Tom	TITLE OF INTENTION. TRANSPORTERS AND ION CHANNELS TITLE OF INTENTION. TRANSPORTERS AND ION CHANNELS CURRENT APPRICATION NUMBER: US/10/168,651 CURRENT FILING DATE: 2002-06-21		SECSU
apiens 1437) 3e-254 Iength: 2457.00 Matches:	Percent Similarity: 100.00% Conservative: 0 Best Local Similarity: 100.00% Mismatches: 0 Query Match: 100.00% Indels: 0 DB: 100.00% Gaps: 0 DB: 16 Gaps: 0 US-09-886-954A-1 (1-477) x US-10-115-831-137 (1-1862)	1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 	Db 64 CCCGCGGGCGCGCGCGCGCGCCGCCGCCGCCGCCGCCGC	Db 184 GetCtGetGetTinlinitinition 111111111111111111111111111111111111	QY 101 LeuLeuCySSerValProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspVal 120 	<pre>121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCyGlyValAlaSerLeuVal 1 11111111111111111111111111111111111</pre>	QY 141 AlaProvalTyrIleSerGiuleAlaTyrProAlaValArgGiyLeuLeuGiySerCys 160 Db 11<	Db 484 GTGCAGGTAATGGTCGTCGGCAATCCTCCTGGCCTAGCTGGCTG	Qy 201 PheMetProGluThrProArgPheLeuleuThrGlnHisArgArgGlnGluAlaMetAla 220 Db	<pre>221 AlaLeuArgPheLeuTrpGlySerGluGInGlyTrpGluAspProFroIleGlyAlaGlu 111111111111111111111111111111111111</pre>	Qy 241 GINSerPheHisLeulaleuleulargGInProGlyIleTyrLysProPheIleIleGly 260 11 11 124 CAGAGCTTTCACCTGGCCCTGCTGCGGGCAGCCGGCCATCTACATCATCATCGTTCGGT 783	<pre>Qy 261 ValSerLeuMetAlaPheGInGInteuSerGlyValAsnAlaValMetPheTyrAlaG1u 280</pre>

÷

ţ.

,

<pre>TTFFE. DM CORRECTENT MARK/RFT. MAGE feature NAME/RFT. Made supients NAME/RFT. Made for theyre ID No. U320010171275A1 111E107CB1 NAME/RFT. Made for theyre ID No. U320010171275A1 111E107CB1 NAME/RFT. Made for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E107CB1 Deed. Name for theyre ID No. U320010171275A1 111E1071711011111111111111111111111111</pre>				Glyse	cecaecec	0	ACTCAGCTTC 1	aAlaProPro 6	000000000000000000000000000000000000000	hrLeuGlyAla 80	-8	ysteuSerteu 100	AGCTGAGCCTC 345	laGlnAspVal 120	CCAGGZ	erLeuVal 14	CCTCCCTAGTG 465	auGlySerCys 160 CCCrTCrTCT		 3GGTGCTGGAG 585	uMetCy	TTCTCATGTGC 645	MetAl	-FA	eGlyA	CGGGGCTGA	IleIleGly 26	rcarcarcecc 825	neTyrAlaGlu 280 CTATGCAGAG 885	
DNNA KEY: KEY: KEY: KKY: KKY: KEY: Colland 1 01 1 01 1 01 1 01 1 01 1 01 1 01 1 0	275A1 1416107CB	208 477 477 5: 0 0	208	DLeuLeuGlyProProG	scrrcreeeccrccre	laAlaAlaLeuGl	CCGCTGCCCTGGC	eProSerLeuGlnArgA	CCTAGCCTGCAGCGCG	oPheGlyAlaValValT	GTTCGGGGCTGTCGTGA	lAspArgAlaGlyArgL	GACCGCCCGGCCGGCCA	aAlaValIleThrAlaA	recercateaceeee	/LeuAlaCysGlyValA	CUGGCCTGCGGTGTTG	DAlaValArgGlyLeuL		GCCTACCTGGCAGGCT			31nHisArgArc	CAGCACAGGCGC	TrpGluAspProPro1	CTGGGAAGACCCCCCCA	70	cecarcracaaeccer	ValAsnAlaValMetP 	
DNNA REF: REF: REF: REF: REF: REF: INFORMED SCORT SCOR	D No. US2003017	54	0-168-651-28 (1	coGluGluThrGlnPrc	PAGAGGAAACCCAGCCC	IPheLeuAlaAlaPhe	CTTCCTCGCCGCCTTC	rSerSerProAlalle	CAGCTCCCCGGCCATO	pAlaAlaAlaSerTr	CGCCGCCGCCCCCCGC	uGlyGlyTrpLeuVa]	GGGCGGCTGGCTGGTC	OPhevalAlaGlyPhe	cricarecceectry	yArgLeuLeuThrG1	CCGCCTCCTCACCGG	rGlulleAlaTyrPro	olueleliviation		sValPr	CGTGCC	oArgPheLeuLeuTh	GCGCTTCCTGCTGAC	pGlySerGluGlnGl	GGGCTCCGAGCAGGG	aLeuLeuArgGlnPrc	cerecrececcecce	eGInGInLeuserGIy ccAGCAGCTGTCGGGG	
DNNA KEY: KEY: KEY: KKY: KKY: KEY: Colland 1 01 1 01 1 01 1 01 1 01 1 01 1 01 1 0	sapiens feature ON: Incyte	3.51e- 2457.0 2457.0 2457.0 100.00 1arity: 100.00 15	1 (1-477) x US-	fetThrProGluAspPr	rtgaceccegaeacce	roArgGlyArgArgVa	CCCCCCCCCCCCCCCCCCC	llyPheAlaLeuGlyTy 	GCTTCGCGCTCGGCTP	laProArgLeuAspAs	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	laAlaGlyGlyValLe	CGGCGGGGGGGGAGTGCT	euLeuCysSerValPr	recrerecreetec	rpMetLeuLeuGlyGl	GGATGCTGCTGGGGGG	laProValTyrIleSe	evlewaether	TGCAGCTAATGGTCGT	rpArgTrpLeuAlaVa	Geogergeorgeorg	heMetProGluThrPr	TCATGCCCGAGACCCC	laLeuArgPheLeuTr	CCTGCGGTTCCTGTG	CPheH	AGAGCTTTCACCTGGC	alserLeuMetAlaPh rcrccrgArgGccrT	
	TYPE: DNA ORGANISM: H FRATURE: NAME/KEY: m OTHER INFOR -10-168-651-2 ignment Score	: iimil ch: ch:	-09-886-954A	1	46	21	06	ч	66	н	26	ы	86	01	46	21	06	41	5	26	81	86	01	46	21 A	-0 90	41	66	61 26	

		leGluGJuAJaLysPh	eLysAspSerSerLeu	ThrIlePheCluCluAlarysPheLysAspSerSerLeuAlaSerValValValGlyVal 300
Db 86	886 ACCATCT1	LTGAAGAGGCCAAGT	CAAGGACAGCAGCCTG	GCCTCGGTCGTCGTGGGTGTC 945
QY 30	301 IleGlnVa	alleuPheThrAlaVa	l AlaAlaLeuIleMet	<pre>IleGlnValLeuPheThrAlaValAlaValAlaValLewEtAspArgAlaGlyArgArgLew 320 </pre>
Db 94	46 ATCCAGG	rectert cacaecter	GGCGGCTCTCATCATC	GACAGAGCAGGCGGAGGCTG 1005
		alleuSerGlyValVa	l]MetValPheSerThr	LeuLeuValLeuSerGlyValValValWetValPheSerThrSerAlaPheGlyAlaTyrPhe 340
DD 1006		rcttgtcaggtgtgg	CATGGTGTTCAGCACC	BAGTGCCTTCGGCGCCCTACTTC 1065
		rrG1nG1yG1yG1yProG1	YASnSerSerHisVal	LysLeuThrGlnGlyGlyProGlyAsnSerSerHisvalAlalleSerAlaProValSer 360
Db 1066		CCAGGGTGGCCCTGC	ICAACTCCTCGCACGTG	GCCATCTCGGCGCCTGTCTCT 1125
QY 361		coValAspAlaSerVa	l[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	AlaGInProvalAspAlaSerValG1yLeuAlaTrpLeuAlaValG1ySerMetCySLeu 380
Db 1126		cretreareccaecer	GGGGCTGGCCTGGCTG	GCCGTGGCCAGCATGTGCCTC 1185
Qy 381		aGlyPheAlaValGl	YTTPGJYProllePrc	PheIleAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGluIle 400
Db 1186		CGGCTTTGCGGTGGG	CTGGGGGCCCATCCCC	TGGCTCCTCATGTCAGAGATC 1245
_		uHisValLysGlyVa	141aThrGlyIleCys	
DD 1246		GCATGTCAAGGGCGT	GGCGACAGGCATCTGC	GTCCTCACCAACTGGCTCATG 1305
QY 421		uValThrLysGluPh	leSerSerLeuMetGlu	AlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAla 440
Db 1306		cereaccaaceaerr	CAGCAGCCTCATGGAG	sticticaddccctateddcc 1365
QY 441		wAlaSerAlaPheCy	sIlePheSerValleu	PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValPro 460
Db 1366		TGCCTCCGCTTTTTCTG	CATCTTCAGTGTCCTT	TTCACTTTGTTCTGTGTCCCT 1425
QY 461 Db 1426	I GluThrLy 16 GAAACTAP	'sGlyLysThrLeuGl AGGAAAGACTCTGGA	GluthrLysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg 	PheGluGlyArg 477 TTTTGAGGGGCGA 1476
RESULT 3 US-10-115-831-138 Sequence 139, App Publication No. UJ GENERAL INFORMATI APPLICANT: Tang, APPLICANT: Asun, APPLICANT: Asun, APPLICANT: Asun, APPLICANT: Asun, APPLICANT: Asun, APPLICANT: Asun, APPLICANT: Drman, TITLE OF INVENTI TITLE OF INVENTI TITLE OF INVENTI TITLE OF INVENTI TITLE OF INVENTI TITLE OF INVENTION PRIOR APPLICATION PRIOR APPLICA	<pre>831-138 831-138 131, Applic ion No. US20 inrepresent NT: Tang, Y. NT: Tang, Y. NT: Asundi, NT: Asundi, NT: Ren, Fe INVENTION: FERENCE: 792 FILUNG DATE: OF SEQ ID NO SEQ SEQ ID NO SEQ ID NO</pre>	RESULT 3 US-10-115-831-138 US-10-115-831-138 Sequence 138, Application US/1011583; Publication No. US20030219743A1 GENERAL INFORMATION: APPLICANT: Tang, Y. Tom APPLICANT: Tang, Y. Tom APPLICANT: Asundi, Vinod APPLICANT: Asundi, Vinod APPLICANT: Ren, Feiyan APPLICANT: Ren, Feiyan APPLICANT: Ren, Feiyan APPLICANT: Neunac, Radoje T. TITLE OF INVENTION: NO. US200302197 TITLE OF INVENTION: NO. US200302197 TITLE OF INVENTION: NO. US200302197 TITLE OF INVENTION: POLYEPETIdes TITLE REFERENCE: 79201792017 CURRENT APPLICANTON NUMBER: US/10/11 CURRENT APPLICANTON NUMBER: US/10/11 CURRENT APPLICATION NUMBER: US/10/11 FRIOR FILING DATE: 2000-09-22 FRIOR APPLICATION NUMBER: US/10/11 PRIOR APPLICATION NUMBER: US/10/11 PRIOR APPLICATION NUMBER: US/10/11 PRIOR PILING DATE: 2000-05-18 NUMBER OF SEQ ID NOS: 178 SOFTWARE: PL-L-Genes Version 2.0 SOFTWARE: DAC PRIOR APPLICATION SAPIENS NUMBER OF SEQ ID NOS: 178 SOFTWARE: DAC PRIOR APPLICATION NUMBER: US/10/11 PRIOR APPLICATIO	1 13Alel Nucleic 15,831 3	Acids and
Pred. No.: Score:		2.25e-212 2067.50	Length: Matches:	1655 408

Tue Sep 28 09:09:40 2004

us-09-886-954a-1.rnpb

Qy 341 LysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlILeSerAlaProValSer Db 111111111111111111111111111111111111		Db 937 TrichTcGcccGGcTTTGCGcrGGGGcrGGGGCcCArCcCcTGGCTCTCATGTCAGAGATC QY 401 PheProLeuHisValLysGlyValAlThrrGlyIleCysValLeuThrAsnTrpLeuMet QY 101 PheProLeuHisValLysGlyValAlThrrGlyIleCysValLeuThrAsnTrpLeuMet Dy 997 TrcccTCTGGATGTATGAGGGGGTGGGGGGGGGGGGGGGGGG	QY 421 AlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAla 	Qy 441 PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValPro Qy 111	Qy 461 GluthrLysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg [RESULT 4 US-10-264-237-688 ; Sequence 688, Application US/10264237 ; Dublication US/10264237	GENERAL INFORMATION: APPLICANT: Birse et al. TITLE OF INVENTION: Nucleic Acids, Proteins, and Antibodies FILE REPERDES: PAJ3191	CURRENT APPLICATION NUMBER: US/10/264,237 CURRENT FILING DATE: 2002-10-04 PRIOR APPLICATION NUMBER: PCT/USO1/16450 PRIOR FILING DATE: 2001-05-18	PRIOR APPLICATION NUMBER: US 50/205,512 PRIOR FILING DATE: 2000-05-19 NUMBER OF SEQ ID NOS: 2876 SOFTWARE: PATENTIN VEY. 3.1	: SEU ID NO 888 : LENGTH: 1156 : TYPE: DNA : ORGANISM: Homo sapiens	<pre>FEALUKE: NAME/KEY: misc feature LOCATION: (24)(24) CTHER INFORMATION: n equals a,t,g, or c</pre>	REALORE: NAMEXERY: misc feature LOCATION: (47)(47) CTHER INFORMATION: n equals a,t,g, or c	<pre>rEALUKE: NAME/KEY: misc feature : LOCATION: (351)(351) ; OTHER INFORMATION: n equals a,t,g, or c provement</pre>	NAMUKE: NAMEKEY: misc feature LOCATION: (397).(397) ; OTHER INFORMATION: n equals a,t,g, or c	<pre>produces:</pre>	FEATURE: NAME/KEY: misc feature LOCATION: (792)(792)
st bocal Sim ery Match: : -09-886-954A	QY 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 20 D 4 ArgaCgCcCsdsdsdaAacCcagcgcscrtrcrGsGsGccrccrGsGsGcGcGs 63 Ov 21 ProArgGlyArgArgValPheLeuAlaAlaAhaAlaAlaLeuGlyProFuels 40	<pre>1 </pre>	124 GGCFTCGCGCTCCGGGCTACCCCGGGCCGGCCGCCGCGCGCGCG	<pre>184 GCCCCGCCCGGCCGCCCCCCCCGGGGGGGGGGGGGGG</pre>	<pre>222</pre>	DD 222	141 AlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 	11eLeuLeuAlaTyrLeuAlaGlyTr 	Qy 181 TrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCys 200 Db 337 TGGCGCTGGCTGGCTGGCGTGCGTGCGTGCCCCCCCCCC	QY 201 PheMetProGluthrProArgPheLeuteuthrGlnHisArgGlnGluAlaMetAla 220 01	Qy 221 AlabewargPheLewTrpGlySerGluGIQTrpGluAspProFrolfeGlyAlaGlu 240 Ull Ull Ull Ull Ull bb 457 GCCCTGCGGGTTCCTGTGGGGCTCCGAGCAGGGGGGGGGG	Qy 241 GlnSerPheHisLeulaLeuleuArgGlnProGlyIleTyrLysProPheIleIleGly 260 Db 1	Qy 261 ValSerLeuMetAlaPheGinGinLeuSerGlyValAsnAlaValMetPheTyrAlaGlu 280 Db 517 GTCTCCCTGATGGCCTTCCAGCAGCTGTCGGGGGGCGCGCGC	Qy 281 ThrIlePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValValGlyVal 300 Db 637 AccArcTrTGAAGAGGCCAAGGTAGGACGAGGCCAGGTCGTCGGTGGTGTC 696	Qy 301 11eGinvalLeuPheThralavalalaAlaLeuIleMetAspArgAlaGlyArgArgLeu 320 Db 697 ATCCAGGTGTGTTCACAGCTGTGGCGGGCTGCTCTCATGACAGAGGCGGAGGCCGGAGGCTG 756	QY 321 LeuLeuValLeuSerGiyValValMetValPheSerThrSerAlaPheGlyAlaTyrPhe 340

•

.

QY261ValSerLeuMetAlaPheGInGInLeuSerGlyValAsnAlaValMetPheTyrAlaGlu280Db463GTCTCCCTGATGGCCTTCCACGGGGGGTCAACGGCGTCATGTTCTATGGCAGAG522OY281Thr11ePheGluG1uAlaLysPheLysAspSerSerLeuAlaSerValValGJyVa1300Db523ACCATCTTTGAAGGGCCTGAGGTGGTCGGGGGGGGGGGG	<pre>[[[</pre>	RESULT 5 US-10-169-395-29 Sequence 29, Application US/10169395 Publication No. US20040034192A1 ENDLICANT: KINUNA, FURDA, APPLICANT: KINUNA, FURDA APPLICANT: KINUNA, FURDA APPLICANT: KINUNA, FURDA TITLE OF INVENTION: THESE ROTEINS TITLE OF INVENTION: THESE ROTEINS FULS REPERENCE: 01997 015100.15 FULS REPERENCE: 01997 015100.01055 FULS REPERENCE: 0100-01-01 FULS REPERENCE: 0100-01-01-01 FULS REPERENCE: 0100-01-01-01 FULS REPERENCE:
<pre>conternon: n equals a,t,g, or c FEATURE: NAME/KEY: misc feature CCATTON: (1115)(1119) COLORITON: (1115)(1119) FEATURE: NAME/KEY: misc feature FEATURE: NAME/KEY: misc feature COLORITON: (1156)(1156) COLORITON: (1156)(1156) CUS-10-264-237-688 COLORITON: (1156)(1156) COLORITON: (1156)(1156) COLORITON: (1156)(1156) COLORITON: (1156)(1156) COLORITON: (110: (1156)(1156) COLORITON: (1156)(1156) COLORITON: (1157)(1156) COLORITON: (1110)(110)(110)(110)</pre>	 111111111111111111111111111111111111	QY121TrpMetLeuLeuGly01yArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal140Db108

us-09-886-954a-1.rnpb

Migmment Scorest: 3.34-157 Length: 3.46 Scorest: 3.34-157 Length: 3.46 Scorest: 3.34-157 Matchest: 1 Scorest: 3.34-157 Matchest: 1 Scorest: 3.34-157 Matchest: 1 Scorest: 3.34-157 Matchest: 1 Scorest: 3.32 Matchest: 1 Scorest: 3.33 Matchest: 2 DiscryMatch: 1.3 Conservative: 2 DiscryMatch: 1.3 Conservative: 2 DiscryMatchest: 1.1 Matchest: 1 DiscryMatchest: 1.1 Matchest: 2 DiscryMatchest: 2.1 Matchest: 2 DiscryMatchest: <	<pre>mert Scores: Staniarity: 57:45 Match: 15:4:50 Match: 15:4:50 Match: 15:3:31 Match: 15:3:31</pre>		-29	1.5.4			
 -09-686-954A-1 (1.477) x US-10-165-395-29 (1-1461) 1 MetThrProGludapProGluciUThrGlnProLeuteuGlyProProGlUGIYSEATA 2 1 Alfold(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(-09-686-954A-1 (1-477) x US-10-165-395-29 (1-1461) 1 Met'hrrProGlukapProGluGlUThrGlnProLeuleuGlyProProGlyGlySerAla 2 (1 Archiffill) 1 11.10.10.10.10.10.10.10.10.10.10.10.10.1	No.: No.: t Simil ocal Si Match:	es: rity: ilarity	.346-15 554.50 7.85% 7.64% 3.27% 3.27%	ive s:	53 53	
 MetThrProGluAspProGluGiuThrCInProfeuteuGiyProFolyGiySerAla MetThrProGluAspProGluCill[Met'hr'ProGludsProGluGlum'hrClnProLeuleuGlyProProGlyGlySerAla 2 Hill(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(09-886-954	-1 (1-47) × US-10-16	395-29 (1-146		
 kirákidsúcsokádak okokadak körökökökökökökökökökökökökökökökökökö	 kirákidőcödádákócókádákócókátákócókátákócókácsós i kirákidőcöcsökököcsös i kirákidőcöcsökökökösökökösökökökökökökökökökökök		MetThrPro	GluAspProGluG	luThrGlnProLeuLeu	roProGlyGlySerAl	
21 ProArgGi yArgArgYal PheLeuAlaAlaAlaAlaAlaAlaLeuGi YProLeuSeerbe 4 [1][1][1][1][1][1][1][1][1][1][1][1][1][21 ProArgGIyArgArGYATGARCENTCLINICULUL INTOLUCION CONSTICUENCENDE 4 121 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		ATGACGCCC	CGAGGACCCAGAGG	AAACCCAGCCGCTTCTG	CTCCTGGCGGCAGCGO	
<pre>121 cccccccccccritriccritricciccccccccccccc</pre>	<pre>121 ccccccccccccccccccccccccccccccccccc</pre>	21	ProArgG13	ArgArgValPheL	euAlaAlaPheAlaAla	AlaLeuGlyProLeuSerPhe	
<pre>41 GlypheAlaLeuGlyTyrSerSerProAlaTleProSerLeuGlnArgAlaAlaProPro 51 AlaProArgJeuAspAspAlaAlaAserProAlaTleProSerLeuGlnArgAlaAlaProPro 51 AlaProArgJeuAspAspAlaAlaAserProAlaTleProSerLeuGlnArgAlaAlaProPro 52 AlaProArgJeuAspAspAlaAlaAserProAlaTleProSerLeuGlnArgHyleLeuGlyAla 52 GcccccGcccCrGcGcrCcCGccCcCrGcGrCcGcGcGccGcGcGcG</pre>	 1 GlypheAlaLeuGlyPyrSerSerProAla11eProSerLeuGlnArgAlaAlaProPro 6 1 AlaAradyPyrSerSerPacAaGreeceeceeceeceeceeceeceeceeceeceeceeceec	121	ccccccccccc	ccccccccrt	rcecceccrrceccecr	scortogocococtoctoc	
<pre>1 distroction distribution distroct distrese distroct distroct distroct distroct distroct d</pre>	<pre>61 AllaProArgieuk5As5Astructurecutaecutaecutaecutecutecutecute 61 AllaProArgieuk5As5Astructurecutaecutaecutaecutecutecutecute 61 AllaProArgieuk5As5Astructurecutaecutaecutaecutecutecutecute 624 GCCCCGCGCCTGGACGACGCCCCCCCGGGACGAGGACCTGGACCTGGACCTCG 81 AllaAllG[],[]],[]],[]],[]],[]],[]],[]],[]],[]],</pre>	4 0	GlyPheAld	aLeuGlyTyrSerS	erProAlaIleProSer	LeuGInArgAlaAlaProPro	
<pre>61 AlarroArgieuAsphabAlaAlaAlaserTrpheGiYalavalValThrLeuGiYAla 8 61 AlarOArgieuAsphabAlaAlaAlaserTrpheGiYalavalValThrLeuGiYAla 8 1 alcoccccccccccccccccccccccccccccccccccc</pre>	61 AlaProArgieusPASPAIAAlabserTrippieGIYAIAVAITHILIEUGIYAIA GCCGGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGG	χ Ω	20011200	I LIGGU I ALAGUT	CCCCGGCCAI CCC TAGC	olocace construction	1 1
81 AlaAlaGi yGi yYalLeuGi yGi YTrpLeuYalAspArgAlaGi yArgLysLeuserLeu 1 301 GCGGCGGGGGGGGGCGCCTCGGGCGGGGGGGGCGGGGC	<pre>81 AlaAlaGlyGlyvalteudlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSertfeu 81 BlaAlaGlyGlyvalteudlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSertfeu 90 GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	4 6	AlaProArg GCCCCGCGCG	JLeuAspAspAlaA	CI-as	AlaValValThrLeuGlyAla	
<pre>301 [[[]][][][][][][][][][][][][][][][][][</pre>	<pre>101 [[[][[][][][][][][][][][][][][][][][][</pre>	81	AlaAlaGly	yGlyValleuGlyG	lyTrpLeuValAspArg	aGlyArgLysLeuSerLe	
<pre>101 LeuteucysservalProPheValAlaGlyPheAlaValI1eThrAlaAlaGlnAspVal 1 261 TrGCrGGTGCCTrCGTGGCCCTrGGGCGGGCCTGGGCCGGGGCCGGGGCGGGGCGGGGCGGGGCGGGGCGGGG</pre>	<pre>101 LeureucysSerValProPhevalAlaGlyPheAlaValI1EThrAlaAlaGlhAspVal 101 LeureucysSerValProPhevalAlaGlyPheAlaValI1EThrAlaAlaGlhAspVal 101 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCrCacGaGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	30	GCGGCGGGGGGG	GGGAGTGCTGGGCG	GCTGGCTGGTGGACCGC	CGGGCGCAAGCTGAGCCT	
<pre>361 Tright Control of the second of the</pre>	<pre>361 frightering frequent and frequent a</pre>	0	LeuLeuCys	sSerValProPheV	alAlaGlyPheAlaVal	eThrAlaAlaGlnAspVa	
<pre>121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCyGlyValAlaSerLeuVal 1 121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCyGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	<pre>121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal 131 TrpMetLeuLeuGlyGlyArgLeuLeuThrCl/LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</pre>	36	TTGCTGTGC	CTCCGTGCCCTTCG	TGGCCGGCTTTGCCGTC	CACCGCGGCCCAGGACGT	
 421 Tidinferferferferferferferferferferferferferf	 421 Tödarförförförförförförförförförförförförför	CN I	rpMetLe	ILEUGIYG1	euLeuThrGlyLeuAla	GlyValAlaSerLeuVa	
<pre>141 AlaProValTyrIleSerGluTleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 1 141 </pre>	<pre>141 AlaProValTyr1leSerGluTleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 141 GCCCGGGTCTAArCTCCGAAATCGCCTAACGGCAGTCGGGGGGGGGG</pre>	42	GGATGCT	CTGGGGGGG	TCCTCACCGGCCTGGCC	GGTGTTGCCTCCCTAGT	
<pre>481 GċċċċġċrċrċċàĂriċġċċrĂċċċàġċĸġċrċċġċġċrċċċġċċċċċċġċrċċiċġi 5 161 ValGlnEuwetvalValValValValGlyIleLeuLeuAlafYrEu&laGlyTrpValLeuGlu 1 161 ValGlnEuwetvalValValValGlyIleULeuLeuAlaGlyTrpValLeuGlu 1 181 TrpArgTrpLeuAlaValLeuGlyCySValProProSerLeuwetLeuLeuLeutetCyS 2 181 TrpArgTrpLeuAlaValLeuGlyCySValProProSerLeuwetLeuLeuLeutetCyS 2 101 TdGcacGcGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	<pre>481 dccccdsrcrix/arcriticityTleteuLeuAlarytreuAlaclyTryValLeuGlu 161 ValGInLeuMetValValValValGIyTleteuLeuAlarytreuAlaclyTryValLeuGlu 161 ValGInLeuMetValValValGIyTleteuLeuLauAlarytreuAlaclyTryValLeuGlu 181 TrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuMetCys 181 TrpArgTrpLeuAlaValLeuGIyCysValProProSerLeuMetLeuLeuMetCys 601 TqGccGrGGcTGGCTGGCGGCGGCGGCGCGCCCCCCCCCCCC</pre>	4	aP 	ITyrIleSerGluI	leAlaTyrProAlaVal	ercy	
<pre>161 ValGInLeuMetValValValGIyIleLeuLeuAlaTryrLeuAlaGIYrrpValLeuGlu 161 []]]]]]]]]]]] 161 TrpArgTrpLeuAlaValValValProFcsGcscraccrasGaGGGragGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	<pre>161 ValGInLeuMetValValValGIyIleLeuLeuAlaTryrLeuAlaGIyTryValLeuGlu 161 []]]]]]]]]]]]]]] 161 TrpArgTrpLeuAlaValVaGGCATCCTCGGCAGGCTGGGGGGGGGGGGGGGGGGGGGG</pre>	48	-22	CTACATCTCCGAAA	TCGCCTACCCAGCAGTC	-DLDD	
<pre>541 GricinGricirGricirCirCirCirCirCirGicGriGirGirGirGirGirGirGirGirGirGirGirGirG</pre>	<pre>541 GricönGricGricGricGricGricGricGricGricGricGric</pre>	ن ف	::::::::::::::::::::::::::::::::::::::	JMetValValValG	LeuAl	LeuAlaGlyTrpValLeuGlu	18
<pre>181 TrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuMetCys 181 [</pre>	<pre>181 TrpArgTrpLeuAlaValLeuGIyCysValProProSerLeuMetLeuLeuMetCys 180 [][][][][][][][][][][][][][][][][][][]</pre>	54	5	AATGGTCGTCGTCG	CTGGC	creecaegcreegrecreeae	
<pre>201 PheMet ProGluThrProArgPheLeuLeuThrG1nHisArgArgG1nGluAla-MetAl 1 ::: 661 TTCATGCCCGAGACCCCGCGCTTCCTGCTGACTCAGCAGCGCGAGAGGCTGCTC 20 aAlaLeuArgPheLeuTrpG1ySerGluG1nG1yTrpG1uAspProProI1eG1yAlaG1 718</pre>	<pre>201 PheMetProGluThrProArgPheLeuLeuThrG1nHisArgArgGlnGluAla-MetAl 1 ::: 661 TTCATGCCCGAGACCCCGCGCTTCCTGCTGACACACGCCAGGAGGCTGCAGGAGGCTGCTC 220 aAlaLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspProProIleGlyAlaGl 718</pre>	18 60	TrpArgTri TGGCGCTG	preuAlaValleuG scrggcrgrgcrgg	lyCysValProProSer GCTGCGTGCCCCCCCCC	LeuMetLeuLeuLeuMetCys CTCATGCTGCTTCTCATGTGC	
<pre>661 TrCATGCCGGGAGACCCGGGGTTTCTTGTTTTTTTTTTTT</pre>	<pre>661 TrCATGCCGGGAGCCCCGGGCTTCTTGILITITITITITITITITITITITITITITITITITI</pre>	7	PheMetPro	oGluThrProArgP	heLeuLeuThrGlnHis	ArgArgGlnGluAla-MetAl	
<pre>220 aAlaLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspProProIleGlyAlaGl 718</pre>	<pre>220 aAlaLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspProFrolleGlyAlaGl 718</pre>	9	TTCATGCC	CGAGACCCCCGCGCGCT	TCCTGCTGACTCAGCAC	į	718
718	<pre>718</pre>	N	AlaLeuA	rgPheLeuTrpGl	SerGluGlnGlyTr	spProProIleGlyAla	240
<pre>240 uGinSerPheHisLeuAlaLeuLeuArgGinProGlyIleTyrLysProPheIleIleGl 718</pre>	<pre>240 uGinSerPheHisLeuAlaLeuLeuArgGInProGly1leTyrLysProPheIleIleG1 718</pre>	71			Ì		718
718 260 yvalSerbeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPheTyrAlaGl 718	718	4	nSer	eHisLeuAlaLe	euArgGlnProGlyI	eTyrLysProPheIleIleG	260
260 yValSerLeuMetAlaPheGInGlnLeuSerGlyValAsnAlaValMetPheTyrAlaGl 718	260 yValSerbeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPheTyrAlaGl 718	71					718
718	718	. 26	alSe	euMetAlaPheGl	nLeuSerGlyValA	aValMetPheTyrAla	. 280
		71					718

.

•

đđ	718					718
QY	300	111	eGlnValLeuPheThrAlaValAl	aAl	aLeulleMetAspArgAlaGlyArgArgLe	320
qа	718	* * * * * * * *				718
Q	320	uLeu	lLeuSerGlyValVa]	<pre>twetvalPheserThr the twetvalPheserThr the twet</pre>	LeuValLeuSerGlyValValMetValPheSerThrSerAlaPheGlyAlaTyrPh	340
qu	119		CTTGTCAGGTGTGGTC	CATGGTGTTCAGCACC	AGTGCCTTCGGCGCCCTACTT	774
QY dd	340 775		rGlnGlyGlyGlyProGly 	AsnSerSerHisVal	eLysLeuThrGInGlyGlyProGlyAsnSerSerHisvalAlaIleSerAlaProValSe	360 834
σλ	360		OValAspAlaSerVal	[G]yLeuAlaTrpLeu	AlaValGlySerMetCysLe	380
qD	835		TGTTGATGCCAGCGTC	JeggCTggCCTggCTg	THEFT	894
QY	380		uPheIleAlaGly-PheAlaValGlyTrpGlyProIl	lyTrpGlyProIlePr		400
ą č	895 400	-	CGGAGGTC	alAlaThrGlvIleCy	CTTCATCGCCGGGGGGTC	420
් සි	911					116
σy	420	etAl	euValThrLysGluP	neSerSerLeuMetG]	aPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyA	440
qq	912				CTCAGGCCCTATGGAG	927
QY	440		euAlaSerAlaPheC	vsIlePheSerValLe	aPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValP	50
qu	928	0	CTTGCCTCCGCTTTCT(GCATCTTCAGTGTCC	TTTCACTTTGTTCTGTGTCC	987
δλ	460		roGluThrLysGlyLysThrLeuGluGluGln1leThrAlaHisPheGluGlyArg	euGluGInIleThrAlaH	477	
qq	988		AAAGGAAAGACTCTGG	AACAAATCACAGCCC	ATTTTGAGGGGGGA 1040	
RESULT 6 US-10-169- S-10-169- S-10-169- APPLICAT APPLICAT APPLICAT APPLICAT APPLICAT APPLICAT APPLICAT PRIOR A PRIOR A	SULT 6 =00-169-395-; =00-169-395-; =00-169-395-; appElcant: 1 NF00 appLicant: 1 NF00 appLicant: 1 NF00 appLicant: 1 AppL appLicant: 2 NETLE 0F INN PRIOR APPLIC PRIOR APPLICANT PRIOR APPL	<pre>ESULr 6 S-10-169-395-19 S-10-169-395-19 Bequence 19, Application US Bequence 19, Application US Gequence 19, Applications GENERAL INFORMATION: APPLICANT: KIMURA, Tomoko TITLE OF INVENTION: HUMAN TITLE OF INVENTION: HUMBR CURRENT APPLICATION NUMBER: PRIOR FILING DATE: 2000-01 PRIOR APPLICATION NUMBER: PRIOR APPLICATION NUMBER: PRIOR FILING DATE: 2000-03 PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FILING PRIOR FIL</pre>	JS/10169395 1192A1 CC CC RC RC RC RC RC RC RC RC	HAVING HYDROPHOBIC 69,395 685 88 2299 16862 18367 109359	DOMAINS AND DNAS	ENCODING
Alignment Pred. No.: Score:	nment Score . No.: e:	t Scores: .: .:	9.99e-127 1268.00 71 782	Length: Matches: Concervative:	789 261 1	
101101					4	

Best Local simil DB: Match: US-09-886-954A-1 US-09-886-954A-1 Db 1 AT 0Y 21 Pr 0Y 21 Pr 0Y 21 Pr 0Y 21 Pr 0Y 41 G1 121 GG 0Y 41 G1 121 GG 0Y 121 121 GG 0Y 121 121 GG 0Y 121 121 GG 0Y 121 121 111 0D 241 121 111 0D 421 111 0D 421 111 0D 481 GT 0Y 161 111 0D 481 GT 0Y 161 111 0D 481 1111 0D 581 111 0D 581 1111 0D 581 1111	<pre>6imilarity: 71.51% Mismetches: 0 m; 21.61% Tadels: 10 m; 21.61% Tadels: 10 954a-1 (1-477) × US-10-169-395-19 (1-789) merThrProGluGampProGluG1WThrGlnProLeubeud1yProFrod1yG1ySerAha 20 1 MerThrProGluGampProGluG1WThrGlnProCredGeGCCTCCTGGGGGGGGG 60 2 ProAregG1yArgArgArgValPheLeuAlaAlaPheAlaAlaLeuG1yProFrod1yG1ySerAha 20 1 MirchTGluGH[[][][][][][][][][][][][][][][][][][][</pre>	Q 340 % (YefferthrClinG) YG1 Yendstreatiis (Valid all fleeth all
<u><u></u> </u>	 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Db 72 ACCTTCCCCGAGAAGCCGCCCGTCGCGGGCAGGGGCGGGGGCGGGGACCCTGCAG 131 Qy 25ArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPheGlyPhe 42 Db 132 AACAAAAGGGTGCTCCGGCCAGTGCTCGGCGGAGTGTTCAGCTTTGGGTAT 191 Qy 43 AlaLeuGlyTyrSerSerProAlaTleProSerLeuGIAALaProBroAlaPro 62 Qy 43 AlaLeuGlyTyrSerSerProAlaTleProSerLeuGIAATgAlaAlaProProAlaPro 62 Db 192 GCCTGGCTCTCGCCCCTGCAGCGCCCTGGAGGCGCTCCTGGAGCGCTCCTGGACCTTGGATCTGACCTG Db 192 GCCTGGTTACCATCCCCTGTCATCCCGGCCCTGGAGGCGCTCCTTGGATCCTGGCCTGGAGCGCTCCTGGACCTGG
• • • • • • • • • • • • • • • • • • •	<pre>60 yvalSerLeuMetAlaPheGInGInLeuSerGlyValAsnAlaValMetPheTyrAlaG1 58</pre>	QY63ArgLeuAspAspAlaAlaAlaSerTrpPheGIyAlaValThrLeuGIyAlaAlaAla B2Db5:2CATCTGACCAAATCCCGGGCATCTGGTTTGGGTCCGTGTTCACCCTGGGAGCAGCGGCC 311Db252CATCTGACCAAATCCCGGCATCTGGTTTGGGTCCGTGTCACCCTGGGAGCAGCGGCC 311QY83GlyGlyValLeuGIyGlyTrpLeuValAspArgAlGIyArgLysLeuSerLeuLeuLeu 102Db312GGAGGCCTGAGTGATCCTCAACGACCTCTGGGGGGGGGG

Tue Sep 28 09:09:40 2004

.

US-10-342-887-1685 ; Sequence 1685, Application US/10342887 ; Bublication No. UV220040058340A1 ; GENERAL INFORMATION: ; APPLICANT: Dai, Hongyue ; APPLICANT: Mao, Mao, Mao ; APPLICANT: Nao, Mao, Mao, Mac Marc Johanna ; APPLICANT: Nan 't Veer', Lura Johanna ; APPLICANT: Van 't Veer', Lura Johanna	APPLICANT:Bernards, ReneTITLE OF INVENTION: Diagnosis and Prognosis of Breast Cancer PatientsFILE REFERENCE:9301-188-99CURRENT FILING DATE:2003-01-15CURRENT FILING DATE:2003-01-15PRIOR APPLICATION NUMBER:60/298,918PRIOR APPLICATION NUMBER:60/298,918PRIOR APPLICATION NUMBER:60/298,918PRIOR PILICATION NUMBER:60/298,918PRIOR PILICATION NUMBER:60/298,918PRIOR PILICATION NUMBER:60/298,918PRIOR PILICATION NUMBER:60/298,918PRIOR PILICATION NUMBER:60/298,710PRIOR PILICATION NUMBER:60/296,710PRIOR PILICATION NUMBER:60/296,710PRIOR PILICATION NUMBER:70/172,118PRIOR PILICATION NUMBER:70/172,118PRIOR PILICATION NUMBER:70/172,118PRIOR PILICATION NUMBER:70/172,118PRIOR PILICATION NUMBER:70/172,118PRIOR PILICATION NO70/172,118PRIOR PILICATION NO	-1685 res: arity: milari A-1 (1	<pre>1 20 CCCGGGGAGGGCCCGGCCAGGCGGGGGGCGGGGGGCCGGGGGCCGGGGCCGGGGCCGGGG</pre>	Qy 43 AlleuGIYYYSERSEFPOALAISEPOSFOAAAIPF06 2 Db 200 GCCUGGTCTACACATCCCGTCATCCCATCCCAGGCCTCTGAAAAPT0 53 ArgLeuAspAspAlaAlaAlaSeTTrpheGIYAlaValYaThrLeuGIYAlaAlaAla 82 Cy 63 ArgLeuAspAspAlaAlaAlaSeTTrpheGIYAlaValYaThrLeuGIYAlaAlaAla 82 Cy 63 ArgLeuAspAspAlaAlaAlaSeTTrpheGIYAlaValYaThrLeuGIYAlaAlaAla 82 Db 260 CartCTGACCAAATCCCCGGCAATCCCGGCCTGGGCGCCTCGGGGCGCCCCGGGAGCGCGGCGCGCGC
<pre>143 ValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGln 162 143 ValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGln 162 110 110 111 111 111 111 111 111 111 111</pre>	<pre>ProGluThFProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeu [::: :::: ::: </pre>	MetPheTyralaGluthrIlePheGludluAlstysPheLysAspSet MetPheTyralaGluthrIlePheGludluAlstysPheLysAspSet TigGTCTACCTGCAGTCTACTTCGAGCAGCGCCGGTGTCGCGCGGCGAGCGA	<pre>332 SerThrSerAlaPheGlyAlaTyrPheLysLeuThrGlnGlyGlyProGlyAsnSerSer 351 ::: 1083 GCCAACCTGGGCTGTACATCCATTTGGCCCCAGGCCTTGAGC 1133 352 HisValAlaIIeSerAlaProValSerGGCCCCAGGCCTTGAGC 1133 352 HisValAlaIIeSerAlaProValSerGGCCCCAGGCCTTGAGC 1133 352 HisValAlaIIeSerAlaProValSer</pre>	<pre>385 PheAlaValGlyTrpGlyProIleProTrpLeuLeuWetSerGluIlePheProLeuHis 404 :::! </pre>

us-09-886-954a-1.rnpb

Tue Sep 28 09:09:40 2004

2004
09:09:40
28
Sep
Tue
-

.

<pre>Publication No. U520030224374A1 GENERAL INFORMATION: GENERAL INFORMATION: APPLICANT: Dai, Hongyue APPLICANT: Linsley, Peter APPLICANT: Linsley, Peter APPLICANT: Nao, Mao APPLICANT: Nao, Mao APPLICANT: Roberts, Chris APPLICANT: Wan de Vijver, Laura APPLICANT: Van de Vijver, Marc APPLICANT: Van de Vijver, Marc APPLICANT: Van de Vijver, Marc APPLICANT: Bernards, Rene APPLICANT: Van de Vijver, Marc APPLICANT: Bernards, Rene FILE REFERENCE: 301-117-2005 FILE REFERENCE: 301-117-2005 FILE REFERENCE: 301-117-2005 CURRENT APPLICATION NUMBER: US/10/172,118 FILE REFERENCE: 301-117-2005 FILE REFERENCE: 301-117-2005 FILE REFERENCE: 301-117-2005 FILE REFERENCE: 301-1172,118 FILE REFERENCE: 301-170 FRICM APPLICATION NUMBER: US/10/172,118 FILE REFERENCE: 301-172-05-14 FILE REFERENCE: 300-1700 FRICM FILING DATE: 2002-05-14 FILE REFERENCE: 300,770 FRICM FILING DATE: 2005-05-14 FILE FILE FILE FILE FILE FILE FILE FILE FILE FILE FILE</pre>	анариинания анариинанинания анариинанинанинанинанинанининанинининини
Db500GTGTACGTGTCTGAGATTGCTCCCCAGGCGTTCGGGGGGCTCTGGGGGGCCACCCCAG559QY163LeuMetValValValValG1Y11eLeuLeuLeuLeuGuluTrpArg182Db560CTCATGGCGGTGTGCTCTGTCCCTCTCAGCGCTTGGCGGGGGGGG	<pre>000 000000000000000000000000000000000</pre>

EOTIDES AND POLYPEPTID US/10/755,889 11-13 5.60/440,068 5.60/469,757 2. 2. 1.2 Length:	<pre>EY: 958.50 arity: 959.23 arity: 44.08 17 01 17 01 17 01 17 01 17 01 17 01 17 01 17 01 17 01 10 10 10 10 10 10 10 10 10 10 10 10 1</pre>	Qy151524Db80ACCTTCCCCGAGAAAGCCGCCCCGCGGGGGGGGGGGGGG	Qy43 AlaLeuGLYTYrSerSerProAlaIIEProSerLeuGLARGALAProProAlaPro 62Db200 GCCTGGTCTACACATCCCTGTCAGCCCTGGAGGGCTCCTTGGATCCTGGACCTG 259Qy63 ArgLeuAspAspAlaAlaAlaSerTrpPheGLYALaVIThrLeuGLYALAAlaAlaDb260 CATCGACCTACAAATCCCAGGCCTGGAGGGCTCCTGGAGCGGCTG 259Qy63 ArgLeuAspAspAlaAlaAlaSerTrpPheGLYALaVIThrLeuGLYALAAlaAlaDb260 CATCGACCAAATCCCAGGCATCCTGGTTCGGAGCGGGGCC 319	Qy83GlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeuLeuLeu 102Db320GGAGGCCTGAGGGCCATGATCCTCAACGACCTCCTGGGCCGGAAGCTGAGGATCATGTTCDb320GSAGGCCTGAGGGCCATGATCCTCAACGACCTCCTGGGCCGGAAGCTGAGGATCATGTTCCy103CysSerValProPheValAlaGlyPheAlaVal11eThrAlaAlaGlnAspValTrpWetDb380TCAGGCTGGGGGGGGGGGGGGGGGGGGCGGGAGGGTGGGGCGGAAGGDb380TCAGCTGTGGCGGGGGGGGGGGGCGGGCTATGGCGGGGGGGG	Qy123LeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuValAlaPro142Db140111111111111111111111Db440CTGCTGCTGGGAAGGACGCTGACGGGGGGGCTTCGCGGGGGGGG	Qy 163 LeumetvalvalgiyIleLeuLeualartyrLeualagiyrrpvalLeuglurrparg 182 Db 560 1111 11 111 <
560 183 620 620 680 680 223 239 800	Qy256ProPheIleIleGlyValSerLeuMetAlaPheGInGlnLeuSerGlyValAsnAlaVal275Db860CCArCACGGAGCTTGGTGGGGCTTGGGGGCTGGGGGGGTGGGGGGCGCATC0y276MetPheTyrAlaGluThrIlePheGluGluAlaLySPheLySASSer2910y276MetPheTyrAlaGluThrTlePheGluGluAlaLySPheLySASSer2910y276MetPheTyrAlaGluThrTlePheGluGluAlaLySPheLySASSer2910y276MetPheTyrAlaGluThrTlePheGluGluAlaLySPheLySASSer2910y276MetPheTyrAlaGluThrTlePheGluGluAlaLySPheLySASSer2910y292CTGGTCTACCTGCAGCAGCGAGCAGCGCCGCGGGGCGGG	Qy312IleMetAspArgAlaGlyArgArgLeuLeuLeuLeuLeuSerGlyValValValMetValPhe331Db1031ACCATGGACCTCGCAGGCGCGCAGGGGCGCTGCTCTGGTCTCGCGCCATCATGTTTGCT1090Qy332SerThrSerAlaPheGlyAlaTYrPheLySLeuThrGlnGlyGlyProGlyAsnSerSer351Db1091GCCAACGGGGGGGGGGGGGGGGGGGGGGCGCTTTGGCCCCAGGGCCTCTGGGC1141	QY 352 HisValAlaIleSerAlaProValSerAlaGInProValAsp 365 Db 1142 CCCAACAGCACTGGGGGGCCTGGAAAGCGGGGGGGGGGG	Qy 385 PheAlaValGlyProfleProfleProfleuteuWetSerGluflePheProLeuHis 404 i::	Qy425ThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAlaPheTrpLeuAla414Db1382ACCAAGTCCTTCCTGCCAGTGGT-GAGCACCTTGGGCCTCCAGGTGCCTTCTT1410Qy445-SerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluThrLysG1464Db1141CGGGGCCTCGGTGGTGGTGGTGGTGGTGCTGGGGCTGCAGGTGCTUTTTY464Db1141CGGGGCCTCTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGT	<pre>QY 464 YLYSTHrLeuGluGInIleThrAlaHisPheGluGlyArg 477 bb 1501 ACGGTCCTGGAGCAGATCGAGTCTTTTCCGCATGGGGAGA 1543 1501 ACGGTCCTGGAGCAGATCGAGTCTTTTTCCGCATGGGGAGA 1543 RESULT 10 US10-755-889-109 Sequence 109, Application US/10755889 Sequence 109, Application US/</pre>

•

us-09-886-954a-1.rnpb

Tue Sep 28 09:09:40 2004

.

114 174 234 294 14 24 42 62 ------ProProGlyGlySerAlaProArgGlyArg------2571, 2572, 2581, 2582, 2591, 2592, 2601 2610, 2611, 2620, 2621, 2684, 2685, 2694 misc_feature 1, 2525, 2526, 2527, 2528, 2529, 2530, 2531, 2532, 2533, 1, 2524, 2535, 2536, 2537, 2538, 2539, 2540, 2541, 2542, 2543, 2544, 2555, 2556, 2537, 2548, 2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559, 2560, 2561, 2562 NWATION: n = A,T,C or G 2569, 2570, 2 2579, 2580, 2 2589, 2590, 2 2599, 2600, 2 misc feature 2602, 2603, 2604, 2605, 2606, 2607, 2608, 2609, 2 2612, 2613, 2614, 2615, 2616, 2617, 2618, 2619, 2 2622, 2623, 2624, 2625, 2626, 2627, 2628, 2693, 2 2685, 2687, 2688, 2689, 2690, 2691, 2692, 2693, 2 DRMATION: n = A,T,C or G 2696 227 78 164 12 1 (1-477) x US-09-814-353-19608 (1-2696) Length: Matches: Mismatches: Mismatches: Indels: Gaps: misc feature 2563, 2564, 2565, 2566, 2567, 2568, 2573, 2574, 2576, 2577, 2578, 2573, 2584, 2585, 2586, 2587, 2588, 2593, 2594, 2595, 2596, 2597, 2598, 2593, 2594, 2595, 2596, 2597, 2598, RMATION: n = A,T,C or G ING DATE: 2000-03-21 LICATION NUMBER: US 60/207,124 LICATION NUMBER: US 60/201,940 LICATION NUMBER: US 60/211,940 ING DATE: 2000-06-15 LICATION NUMBER: US 60/216,820 LICATION NUMBER: US 60/226,661 ING DATE: 2000-07-25 LICATION NUMBER: US 60/227,672 ING DATE: 2000-07-25 LICATION NUMBER: US 60/227,672 ING DATE: 2000-17-25 ING DATE: 2000-07-25 SEQ ID NOS: 22037 SEQ ID NOS: 22037 SEQ ID NOS: 22037 SEQ ID NOS: 22037 SEG ID NOS: 22037 SEG ID NOS: 22037 SEG ID NOS: 22037 SEG ID NOS: 22037 SEG ID NOS: 22037 U Ч = A, T, C (1.23e-92 958.50 59.22% 44.08% 39.01% misc_feature 2695, 2696 DRMATION: n = 1 .19608 10 Homo sapiens rity: ilarity: .. 0

--

Qy425ThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAlaPheTrpLeuAla444Db1417AccaAgrccrTccrGccAGrGGr-GAGCAccrTcGGcGccCrCrGGGrGcCrTrCrTrCrTr11751475Qy445-SerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluThrLySG1464Qy::: ::: :::Db1476ccGGGCCATCGGrGGGrGGrGGGGGGGGGGGCGCGCGGGGGCGACCGGGGCCATCGGTGGGGGGGG	RESULT 12 US-10-424-599-112422 Sequence 132422. Application US/10424599 F PUBLICANTI LA ROSA Thomas J GENERAL INFORMATION: GENERAL INFORMATION: APPLICANT: LA ROSA Thomas J APPLICANT: LA ROSA Thomas J APPLICANT: Zhou Yihua APPLICANT: Zhou Yihua APPLICANT: Cao Yongwei TTLE OF INVENTION: Soy Nucleic Acid Molecules and Other Molecules Associated With TTLE OF INVENTION: Plants and Uses Thereof for Plant Improvement	LUUZH N	NAME/KEY: unsure CATION: (1)(2202) CTHER INFORMATION: unsure at all n locations FEATURE: COTHER INFORMATION: Clone ID: PAT_MRT3847_90584C.1 US-10-424-599-132422	Alignment Scores: Pred. No.: Score: Score: Percent Similarity: Best Local Similarity: Dery Match: 13.57 Nismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 Mismatches: 174 Query Match: 13.57 1	26 ValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeu 384 GTCCTTTCTGCGTCCTCATCGTCGCCTTGGGTCCCAT	Qy 46 TyrserserProAlalleProSerLeugInArgAlaAlaProFroAlaProArgLeuAsp 65 [111] 111 [111] 111 [112] 111 [113] 111 [113] 111 [114] 111 [114] 111 [114] 111 [114] 111 [115] 111 [114] 111 [116] 111 <	<pre>66 AspalaAlaAlaSerTrpPheGlyAlaValValThrLeuGlyAlaAlaAlaGlyGlyVal 85 111111111111111111111111111111111111</pre>	QY B6 LeuGlyG!YTrpLeuValAspArgAlaG!YArgLySLeuSerLeuLeuLeuCySSerVal 105 ::::: ::: ::: ::: ::: ::: :::: :	א ט	Qy 126 GlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuValAlaProValTyrIle 145 [Db 672 GGGAGGTTGTTGGAGGGTTTGGGGATTATCTCTTATGTGGGGGGCTGTTATATA 731
QY 83 G1YG1YValLeuG1YG1YTrpLeuValAspÅrgÅlaG1YÅrgLysLeuSerLeuLeuLeu 102 Db 355 GGAGGCTGAGTGCTCTCAACGACCTCCTGGGCCGGAAGCTGAGCATCATGTTC 414 CY 103 CYSSErValProPheValAlaG1yPheAlaVal11eThrAlaAlaG1nAspValTrpMet 122 Db 103 CYSSErValProPheValAlG1yPheAlaVal11eThrAlaAlaG1nAspValTrpMet 122 Db 103 CYSSErValProPheValAlaG1yPheAlaVal11eThrAlaAlaG1nAspValTrpMet 122 0Y 103 CYSSErValProPheValAlaG1yPheAlaVal11eThrAlaAlaG1nAspValTrpMet 122 0Y 103 CYSSErValProPheValAlaG1yPheAlaVal11eThrAlaAlaG1nAspValTrpMet 122 0Y 123 LeuLeuG1yG1yArgLeuLeuThrG1yLeuAlaCGGTCATGGCGGGGGGGGGGGGGGCGCACGGCTCATGGCGGGGGGGG	<pre>13 ValTyrTleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCyGValGln 143 ValTyrTleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCyGValGln 153 GGFAGGGFTCTGAGATTGCTCCCCAGGGGFTCGGFGGGGGCCTCAGGGGGCCCAGGGGCCCCAGG 163 LeuMetValValValValGlyTleLeuLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArg 163 LeuMetValValValGlyTleLeuLeuLeuLeuAlaGlyTrpValLeuGluTrpArg 163 LeuMetValValValValGlyTleLeuLeuLeuLeuGluTrpArg 183 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuMetCysPheMet 183 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuMetCysPheMet 181 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuMetCysPheMet 181 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuMetCysPheMet 181 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuMetCysPheMet 181 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuMetCysPheMet 181 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuMetCysPheMet 181 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuMetCysPheMet 181 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuL</pre>	Db 655 TGGCTGGTGGTGGTGGTGGTGGTCGTGGTGGTGGTTGGT	239AladluGInSerPheHisLeuAlaLeuLeuArgGInProGlyIleTyrLys [:::	r	<pre>12 IleMetAspArgAlaGlyArgArgLeuLeuLeuLeuValLeuSerGlyValValMetValPhe 12 IleMetAspArgAlaGlyArgArgLeuLeuLeuValLeuSerGlyValValMetValPhe 1066 ACCATGGAGCCTCGCAGGCCGCAAGGTGCTTGCTTTCGTCTCAGCGCCATCATGTTTGCT</pre>	Qy 332 SerThrSerAlaPheGlyAlaTyrPheLysLeuThrGlnGlyGlyProGlyAsnSerSer 351 i:: i::	352 Hisvalalarleseralaprovalseralaglnprovalasp 3 ::: ::::::::::::::::::::::::::::::::	Qy 366 AlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCysLeuPhelleAlaGly 384 ::: ::: :::	QY 385 PheAlaValGlyTrpClyProIleProTrpLeuLeuMetSerGluIlePheProLeuHis 404 :::	Qy 405 VallysGlyvalAlaThrGlyIleCysValLeuthrAsnTrpLeuMetAlaPheLeuVal 424 District [] [] [] [] [] [] [] [] [] [] [] [] []

.

•

us-09-886-954a-1.rnpb

Tue Sep 28 09:09:40 2004

US-10-425-114-26596 Application US/10425114 5 Sequence 26596, Application US/10425114 Fublication No. U520040034808A1 6 ENBERAL INFORMATION: APPLICANT: Liv, Jingdong APPLICANT: Zhou, Yihua APPLICANT: Zhou, Yihua APPLICANT: Zhou, Yihua APPLICANT: Scene, Steven E APPLICANT: Scene, Steven E APPLICANT: Cao, Yongwei APPLICANT: Cao, Yongwei TITLB OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLB OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLB OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLB OF INVENTION: Plants and Uses Thereof for Plant Improvement FILE REFERENCE: 38-21(53313)B CURRENT APPLICATION NUMBER: US/10/425,114 FILE REFERENCE: 38-21(53313)B CURRENT FILING ADTE: 2003-04-28 NUMBER OF SED ID NOS: 73128 SEQ ID NOS: 73128 SEC ID	<pre>S-10-425-114-26596 lignment Scores: red. No.: 702.00 Matches: 1797 core: 2.9e-65 Length: 1797 ercent Similarity: 55.56% Matches: 78 est Local Similarity: 36.72% Mismatches: 78 est Local Similarity: 70 est Local Similarity: 70</pre>	Db 284 Trichtbroscacacracteccidition Qy 47 SerserpoalallebroserLeuglaArgAlaAlaProproalaProArg-LeuAspAs 66 Qy 47 SerserpoalallebroserLeuglaArgAlaAlaProproalaProArg-LeuAspAs 66 Db 344 Tccrccccgacgcagcaccccarcar-ccgacgaccrccarcarcar 390 Qy 66 palaAlaAlaProserLeuglaAlaProproalaProArg-LeuAspAs 66 Qy 66 palaAlaAlaArgertphe61yalaValValThrLeuGlyAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaArgerccarcarcar 390 Qy 66 palaAlaAlaSerTrphe61yalaValValThrLeuGlyAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaA	<pre>451 CAGTGGTCAGAGTCATTGGGGGGCAAAGGGTCATTGATGATGCTGCAATTCC 106 OPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspValTrpMetLeuLeuGlyG1 106 OPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspValTrpMetLeuLeuGlyG1 511 AaACATCATTGGTTGGCTTGCCATCTCTCTTGCAAAGGACTCATCGTTTCTTATATGGG 126 YArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuValAlaProValTyrIleSe 111 AGATTGCTCGAGGGGTTGGTGTTGGTGTCTCTTTATACGGGG 571 ACGATTGCTCGAGGGTTTGGTGTGTGTCTCTTTATACGGTGCCGGTTTACGTGGC</pre>	QY 146 rGluileAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGlnLeuMetValVa 166 Db 531 AGAAATATCACCTCAAAACATGAGGGGGGGCGCTCATGGGCTGATCAGTTATCTGTAAC 690 CY 166 IValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArgTrpLeuAlaVa 186 Db 691 CGTTGGTATATCACCTCAAAACATGAGGGGGGGGCGCTCATGGCTCAGTAAC 690 QY 166 IValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArgTrpLeuAlaVa 186 Db 691 CGTTGGTATATTGTTGCCTGGGCAAGTTTGTTGCTTGGAGGCTTTTGGTGT 750 QY 186 ILeuGlyCysValProProSerLeuMetLeuLeuLeuLeuLeuCAMettProGAGGCTTTTGCTTGGTGT 750 Db 751 AATAGGAATCTTGCTTTGGTTGGCCTGGTGTTGGTGGCCTATTTCTTCATTCCAAAATCCCC 810 QY 206 OrgeneteuLeuThrGInHisArgGGInGluAlaMetAlaAlaLeuArgPheLeuTr 226 Db 811 AGATGGTTGGCAAAGAATGAAGGAAGGAAGAATGAAGATTTTGAAGTTTTGAAGTTCTTGAAGTTCTGGG 810
<pre>146 SerGlufleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGlnLeuMetVal 165 1166 ValValGlyTleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArgTrpLeuAla 165 1166 ValValGlyTleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArgTrpLeuAla 185 126 ValValGlyTleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArgTrpLeuAla 185 127 AcaArTGGCATTATGCTGGCGGTTATCGTGGGGTCTTTTGTCAACTGGAGGGTGGTCTTGGG 851 186 ValLeuGlyCysValProProSerLeuMetLeuLeuMetCysPheMetProGluthr 205 186 ValLeuGlyCysValProProSerLeuMetLeuLeuMetCysPheMetProGluthr 205 186 ValLeuGlyCysValProProSerLeuMetLeuLeuMetCysPheMetProGluthr 205 187 ArtCTAGGAATTTGCCTTGGTGGGTATTAATACCTGGAATTTTTTCATACCTGGA 851 186 ValLeuGlyCysValProProSerLeuMetLeuLeuMetCysPheMetProGluthr 205 187 CGAGATTTGGCTTGGTAGGTATTAATACCTGGAATTTTTTCATACCTGGAAGTCC 911 206 ProArgGPheLeuLeuThGInHisArgArgGInGluAlaMetAlaAlaLeuArgPheLeu 225 182 ArtCTAGGAATTGGCCAAGATGGGGGAATAATAATCCTGGAAGTTCGAAGTTCG 207 CCCAGATGGTGGCCAAGATGGGGGAATAATAATCGTGGAGTTCGAGGTTCGCTTGAAGTTCA 208 TrpGlySerGluGluGluGluAspProProIle237 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaLeuLeuArgGInProGlnFI 253 238GlyAlaGluGlnSerPheHisLeuAlaArgCTGTGGAGAGTTCT 237</pre>	<pre>1023 GIGGCTTCAACGGGGAAAAGGGCTGCAATTGCAGATTTGCAGGAAAGGAAAGGAAAGGAAAGATT 1082 254 TYrLysProPheIleIleGlyvalSerLeuMetAlaPheGInGlnLeuSerGlyvalAsn 273 254 AlavalMetPheTyrAlaGluThrIlePheGluGluAlaLysPheLysAspSerSerLeu 293 274 AlavalMetPheTyrAlaGluThrIlePheGluGluAlaLysPheLysAspSerSerLeu 293 1143 GGATTTGTTCTATTCACTACCATTTGGAAATGCAGGAATTCATCCAGGAAGGT 1202 294 AlaSerValValValGlyValIleGlnValLeuPheThrAlaValAaAIaCT1202 294 AlaSerValValValGlyValIleGInValLeuPheThrAlaValAaAIaCT1202 294 AlaSerValValValGlyValIleGInValLeuPheThrAlaValAaAIaLewEtheu 313 1203 GGTACAGTTGGAACTTGGAGTCATAGGCATGGCATTGCCAGGAATTCCAGGTGGTGGTG 1262</pre>	<pre>314 AspArgAlaGlyArgArgLeuLeuLeuValLeuSerGlyValValWalWelWetValPheSerThr 333 1263 GACAAAGTGGCCGGGGGGGCTGCTTCTAATAATATCCTCATCTGTAATGACGCTTAGCCTT 1322 1263 GACAAAGTGGCCGGGGGGGGCTGCTTCTAATAATATCCTCATCTGGTAATGACGGTTAGCCGTT 1322 334 SerAlaPheGlyAlaTyrPheLysLeuThrGlnGlyGlyGroGJyAsnSerSerHisVal 353 1323 CTCATTGTTCTATAGCATTTTATCTGGGGGGGGTTGTATCAGGAGGATTCACATTTA 1379 354 AlaIleSerAlaProValSerAlaGInProValAspAlaSerValGJyLeuAlaTrDLeu 373 1380TTCAGCATTTTGGGAATAGTTTTATTGTGGAGGATTGTATGGGGGG</pre>	74 AlaValGlySerMetCysLeuPheIleAlaGlyPheAlaValGlyTrpGlyProllePro ::::::::::::::::::::::::::::::::::::	Db 1521 ACAATGGGAAATTGGTCGATTTCGTCGGGGATCACGATGACTTGCATTTGAAT 1580 CY 434 ValleuArgProTyrGlyalaPheTrpLeuAlaserAlaPheCys1lePheSerValLeu 453 CD 1581 TGGAGGAGGGAGCATTACAATCAACTACCAGGAGGAGCATTACAATCACCTACCAGGAGGACATTACAATCAACACACGAGGAGGACATTACAATCAACACACAGGGAGGATATACAATCAAGGAGGAGACATTACAATCAACACACAGGGCAGGAGGAGAGAATTACAATCAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG

us-09-886-954a-1.rnpb

Tue Sep 28 09:09:40 2004

4
200
2
0
4
**
9
0
5
ö
<u> </u>
00
3
م
Sep
S
መ
đ
Tue

4
0
200
N
О
4
σ
0
••
ማ
õ
ω
N
Sep
¢
S
Tue
р.
н

۰,

QY272lAsrAlaVaDb1098CATGGAAT:QY292rLeuhlaseQY292rLeuhlaseCY312eMetAspAriDb1158crTGGCTACAGQY332rThrSerAllQY332rthrAflAllQY332rthAflAllQY332rthAflAllQY332rthAflAllQY332svalAlatlQY332rthAflAllQY332svalAlatlQY332svalAlatlQY332svalAlatlQY332svalAlatlQY332svalAlatlQY332svalAlatlQY333crTrAGCGCQY333svalAlatlQY1356GATCTCCTTGQY432tGluValLetQY1533GTTAGCTGQY1533GTTAGCTGQY432tGluValLetQY1533GTTAGCTGQY432tGluValLetQY1533GTCTTCQY432tGluValLetQY1533GTCTTCQY1533GTCTTCQY432tGluValLetQY1533GTCTTCQY432tGluValLetQY1533GTCTTCQY432tGluValLetQY1533GTCTTCQY432tGluValLetQY1533GTCTTCQY432tGlu
--

7 8 8 8 8 8	<pre>86-954A-1 (1-477) x US-10-425-114-24968 (1-2049) 10 GlnProLeuLeuGlyProProGlyGlySerAlaProArg 22 390 AAGCGGTCATCAACACGGGGAGGTGGTGGTGGCGGGGGGGG</pre>
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	avalvalThrLeuGlyAlaAlaAla 82 ::::::::::::::::::::::::::::::::::::
8 8 8 8 8 8 9 8 9	<pre>98 TTGTTTATGGGTCGCTGCTAGAGGATTTGGAGTCGGTCTATACGCTACCG 85 43 ValTyr1leSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGln 16 43 ValTyr1leSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGln 16 43 ValTyr1ESerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGln 16 43 ValTyr1ESerGGCTCCTCGGGATCAGGGGGGGGGGGGGGGGGGGGGGGG</pre>
888888888888	<pre>203 ProGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeu 222 1038 CCTGAATCCCCAAGGTGGTTGGCAAAAATGGGGAGGATTTGAATGATTGAT</pre>

δλ	309 AlaAlaLeuIleMetAspArgAlaGlyArgArgLeuLeuLeuValLeuSerGlyValVal :	328
qu	1383 ACAACCTGGTTGACTGACTGGTGGTGGTGGTGGTTCTTCTTCTTCTCACCACGCGA :	1442
οy	329 MetValPheSerThrSerAlaPheGlyAlaTyrPheLysLeuThrGlnGlyGlyProGly	348
дD	1443 AIGGICATTACTCTTGTTATTGTTGTGTCATATTTTGTGAGGACAACATAGCTGCT	1502
QY	349 AsnSerHisValAlaIleSerAlaProValSerAlaGlnProValAspAlaSerVal	368
qu	1503 GETTCGCACTTATACTCTGTA	1523
QY		388
qQ	1524ATGAGTATGCTTTCACTGGCTGGACTTGTGGCATTTGTGATTGCATTTTCTCTTGGC	1580
δλ	389 TrpGlyProIleProTrpLeuLeuMetSerGluIlePheProLeuHisValLySGlyVal	408
đũ		1640
Q		428
qŭ	1641 GCTGGAAGTGTTGGGCGAACTGGGCTGACGGGCGATGGGGCGATTACAATGACG	1697
QY		448
qq	1698 GCAAGCCTGATGTTGAACTGGAGCAGTGGAGGAACATTTGCTATCTACGCCGTCGTGTCT	1757
Q	449 IlePheSerValLeuPheThrLeuPheCysValProGluThrLysGlyLysThrLeuGlu	468
qq		1817
δy	469 GlulleThrAlaHisPhe 474	
qa	1818 GAAATCGCCTTCTCATTC 1835	

Search completed: September 28, 2004, 08:02:21 Job time : 4267 secs

,

r

28 09:09:41 2004 Sep Tue

us-09-886-954a-1.rst

GenCore version 5.1.6 (c) 1993 - 2004 Compugen Ltd. Copyright

nucleic search, using frame_plus_p2n model OM protein -

September 28, 2004, 01:47:14 ; Search time 2846 Seconds
(without alignments)
5005.011 Million cell updates/sec ü Run

1 MTPEDPEETQPLLGPPGGSA.....CVPETKGKTLEQITAHFEGR 477 US-09-886-954A-1 2457 Perfect score: Sequence: Title:

BLOSUM62 Scoring table:

Homo sapi BX395379

AY414180

AF289587

Homo sap:

Mus muscu

AGENCOURT 602527373

BX395379 E AY414182 M BM545247 P BG479842 6 BG479842 6

AK081806 Mus muscu

AK081806 AY414180 BX395379

2101 1954

87.9

86.4 69.7 60.7

ß

DB

Query Match Length

Score

Result No.

AF28958

Description

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

29: gb_gss2:*

SUMMARIES

602681616 602998959

BG479842 BG700749 BI334832

830 991

AY414181 CD557801

29

1004 875

ø

AY414182 BM545247

1008 1201 1000 1085 932

60.5 56.1 54.5 52.6 602522606 602689093

CD557801 A BM044230 6 BG478000 6 BG717034 6 B1757409 6

BM044230 BG478000

50.5

50.2 50.1 48.6 48.2

602720404 602402292 602861314 603178364 603078566 603078776 603076257

BG771736 BG281777

AGENCOURT

BI114765 BQ9191657 BI916408 BI916408 BI828656 BI831908 BI828949

BI114765 BQ919165 BI916408 BI828656

45.6 45.5

BG771736 BG281777

49.8

BI757409

BG717034

603029344

603621486

Pan trogl AGENCOURT

BI334832 6 AY414181 1

imagegc 7 601501005 MI-P-CP1-UI-M-CG0D

BE986074 UI-M-CG0P

BQ603775

BE986058

601890370 Mus muscu 603065948 603618748

BF308306

602670234

AK089246 1 BG707107 4

BI907581

mascu

Mus

BM008943 A

AGENCOURT

BB612439 H3037C03

BB612439 BG079217 BQ944156

BY750238

BQ644799 BY750238

BY

38.

973 949 947.5 933.5 933.5 933.5 912.5 889

10 10 14 13 12 0

683 6638 6638 978 917 917

36. 36.

888.5 870

603074819

BI826390

BI828949 BI826390 BQ109572 BE910478

1116 1076 1074.5 1059 1059 1036.5 1030.5

υ

BI831908

12 2 12

> 43.8 43.1 42.9 42.2 41.9 40.3 39.9 39.6 38.6 38.6 38.6 38.2 0 37.9 36.6

43.

45.

BQ603775 BE986058

990 980

BE986074 BF308306 AK089246 BG707107 BI907581 BM008943 AK079650 BQ644799 50238 BB612439 BG079217 CA327128 BQ944156 BI402088

0

BQ109572 BE910478

7.0 Xgapop 10.0 , Xgapext Ygapop 10.0 , Ygapext Fgapop 6.0 , Fgapext Delop 6.0 , Delext

27513289 seqs, 14931090276 residues Searched:

55026578 Total number of hits satisfying chosen parameters:

seq length: 0 seq length: 200000000 Minimum DB Maximum DB

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Command line parameters:

-MODELL=frame+ p2n.model -DEV=x1p -0=Cgr2 1/USPTO spool p/US0986954/runat_27092004 170632_13400/app_query.fasta_1.647 -0=Cgr2 1/USPTO spool p/US0986954/runat_27092004 170632_13400/app_query.fasta_1.647 -0B=EST -0PMT=fastap -SUFTATSTEST -MINMATCH=0.1 -LOOPEXT=0 -UNITS=bits -START=1 -END=-1 -MATRIX=blosum62 -TRANS=human40.cdi -LIST=45 -DOCALIGN=200 -THR_SCORE=pct -THR_MAx=100 -THR_MIN=0 -ALIGN=15 -MODE=LOCAL -0UTEMT=pto -NORM=ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=200000000 -USRE=US0986954 @CGN1 1_1500 @runat_27092004 170632 13400 -NCTU=6 -ICPU=3 -NO MMAP -LARGEOUTENY -NEG SCORES=0 -MAIT -DSPELOCK=100 -LONGLOG -DNTMOUT=120 -WARN TIMEOUT=30 -THRADS=1 -XCAP0P=10 -XCAP0P=10 -SGAPOP=6 -FGAPEXT=7 -YGAPOP=10 -YGAPEXT=0.5 -DELOP=6 -DELEXT=7

EST:* Database

em_estba:* em_esthum:*

em_estin:* em_estmu:*

em estov:*

em_estpl:*

em_estro:* em_htc:* gb_estl:*

10:

gb_est2:* 11.

gb_htc:* gb_est3:* gb_est4:* 13: 14:

15: 16: 17:

em_estfun:* em_estom:* em_gss_hum:*

pln:* em_gss_inv:* em_gss_ 18: 19: 20:

VILL:* em gss v em gss f

fun:* 22:

em_gss_mam:* #:snw pro:

Ee

226:::23

em_gss.

em_gss_rod:* em_gss_phg:* em_gss_vrl:* gb_gssl:*

ACCESSION

AK081806 VERSION KEYWORDS SOURCE ORGANISM

AK081806 2101 bp mRNA linear HTC 20-SEP-2003 Mus musculus 16 days embryo head CDNA, RIKEBN full-length enriched library, clone:C130078K14 product:solute carrier family 2, (facilitated glucose transporter), member 8, full insert sequence.

RESULT 1 AK081806 LOCUS DEFINITION

ALIGNMENTS

CB586069 AMGNNUC:N CA322312 UI-M-FX0-

CB586069 CA322312

584 647

34.1 34.0

869 839 837.5 834.5

BF140667

AGENCOURT 601786917

MI-P-CP0

-M-FY0

CA327128 BI402088 BF140667

AKO81806.1 GI:26349396 HTC; CAP trapper. Mus musculus (house mouse) Mus musculus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.

Christer, F. and Hyynhladd, Y. Christer, F. and Hyynhladd, Y. Christer, F. and Hyynhladd, Y. Strong, S. (2011). Largel, 1300. 2003033 Christer, F. Shuhata, Y., Haytaru, N., Sughara, Y., Shuhata, Y. Christer, F. Shuhata, Y., Haytaru, N., Sughara, Y., Shuhata, Y. 200303 2003033 2003037 200303 20030 2003	<pre>/db xref="MGI:2414880" /dD xref="MGI:2414880" /dDme=ruisuonsuo090" /clome=ruisuonsuu /clome=ruisuonsuu /clome=ruisuonsuu /dev stage="16 days embryo" /dev stage="16 days embryo" /lote="unnamed protein product; putative solute=runnamed protein product; putative solute=runnamed protein product; putative solute=runnamed protein product; putative solute=runnamed protein product; putative /dom.start=1 /protein_id="BAC38338.1" /db xref="d1:26343338.1"</pre>	<pre>//limit dution= materious/sture reast reast reast reast reast //rimit dution= materious/sture/stu</pre>	Scores: 3.49e-185 Length: 2101 2159.00 Matches: 412 milarity: 92.47% Conservative: 30 Similarity: 86.19% Mismatches: 24 ih: 11 Gaps: 2 954A-1 (1-477) X AK081806 (1-2101)	<pre>1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 20 1 :::: ::: </pre>	<pre>61 AlaProArgLeuAspAspAlaAlaAserTrpPheG1yAlaValValValThrLeuG1yAla 80 111 111 111 111 111 1111 1111 1111 1</pre>	<pre>101 LeuLeuCySSerValProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspVal 120 11111111111111111111111111111111111</pre>	141 AlaProvalTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160 141 111111111111111111111111111111111111
	senes	LOTIO	he ion		ama ,		20 A D
	<pre>1 Carninci, P. and Hayashizaki, Y. High-efficiency full-length cDNA cloning Meth. Enzymol. 303, 19-44 (1999) 99279253 10349636 20149636 Carninci, P., Shibata, Y., Hayatsu, N., Sugahara, Y., Shibata, K., Itch, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y. Itch, M., Konno, H., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y. Ormalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new Genome Res. 10 (10), 1617-1630 (2000) 20499374 11042159</pre>	<pre>shibata,K., Itoh,M., Aizawa,K., Nagaoka,S., Sasaki,N., Carnin Konno,H., Akiyama,J., Nishi,K., Kitsunai,T., Tashiro,H., Itoh Sumi,N., Ishii,Y., Nakamura,S., Hazama,M., Nibhine,T., Harada Yamamoco,R., Matsumuso,H., Sakaguchi,S., Ikegami,T., Kashiwa Fujiwake,S., Inoue,K., Togawa,Y., Izawa,M., Ohara,E., Watahik Voneda,Y., Ishikawa,T., Ozawa,K., Tanaka,T., Natsuura,S., Kaw, Okazaki,Y., Muramatsu,M., Inoue,Y., Kira,A. and Hayashizaki,Y RIKEN integrated sequence analysis (RISA) system384-format Genome Res. 10 (11), 1757-1771 (2000) 20530913</pre>	The RIKEN Genome Exploration Research Group Phase II Team and FANTOM Consortium. Functional annotation of a full-length mouse CDNA collection Nature 409, 685-690 (2001) 5 The FANTOM Consortium and the RIKEN Genome Exploration Resear Group Phase I & II Team. Analysis of the mouse transcriptome based on functional annot. Mature 420, 563-573 (2002)	<pre>d duchi,U. Alzawa,T., Akimura,T., Arakawa,T., Bono,H., Carnin Fukuda,S., Furuno,M., Hanagaki,T., Hara,A., Hashizume,W. Hayashida,K., Hayatsu,N., Hinamoto,K., Hiraoka,T., Hirozane,T Horzi,F., Imotani,K., Ishii,Y., Itoh,M., Kagawa,I., Kasukawa,T Katoh,H., Kawai,J., Kojima,Y., Kondo,S., Konno,H., Kouda,M., Koya,S., Kurihara,C., Matsuyama,T., Numazaki,A., Murata,M., Nakamura,M. Nishi,K., Nomura,K., Numazaki,A., Murata,M., Nakamura,M., Nishi,K., Nomura,K., Suhazaki,A., Murata,M., Okazaki,Y., Saito,R., Saitoh,H., Sakai,C., Sakai,K., Sakazume Sano,H., Sasaki,D., Shibata,K., Shihagawa,A., Shiraki,T., sogabe,Y., Tagama,M., Tagawa,A., Takahashi,F., Takaku-Akahira Takeda,Y., Tanaka,T., Tomaru,A., Toya,T., Yasunishi,A.,</pre>	Murameteu,M. and Hayashızakı,Y. Direct Submission Submited (16-ARR-2002) Yoshihide Hayashizaki, The Institute Submited (16-ARR-2002) Yoshihide Hayashizaki, The Institute Physical and Chemical Research (RIKEN) Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GS RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yok Kanagawa 230-0045, Japan (E-mail:genome-res@gsc.riken.go.jp, URL:htp://genome.gsc.riken.go.jp/, Tel:81-45-503-9222,	Converting of the second sequenced in Mouse Genome CNN 11, 11, 11, 11, 11, 11, 11, 11, 11, 1	UKL:RUCUP://JARNOM.95C.11KEN.90.Jp/. RES Location/Qualifiers 1.200.jp/ source 1.2101 - 2101 - 2101 - 21000 - 2100

,

Page 2

Tue Sep 28 09:09:41 2004

us-09-886-954a-1.rst

	<pre>FEATURES Location/Qualifiers source 11954</pre>	FLITTOHRROEMAIRELMOSESCOMMENTELMOSESCOMMENTELMOSESCOMMENTELMOSESCOMMENTELMOSESCOMMENTELMOSESCOMMENTELMOSESCOMMENTERMERUMSESCOMMENTERMEST 1 11	-09-886-954A-1 (1-477) x AF289587 (1-1954) 1 MetThrProGluAspProGluGluThrGlnProLeuLeuC :::	Qy 41 GlypheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro 60 Db 121 GGCTTCGGCGCTCGGCTCCCCGGGCCATCCCTAGCCTGCAGCGCGCGC	<pre>10 LeuLeuCysSerValProPheValAlaGlyPheAlaVal1[[][][][][][][][][][][][][][][][][][][</pre>
Db541GTGCAGCTGATGGTTGTCACTGGCATCCTCGGCCTATGTGGCAGGCTGGGCTCAGAG600QY181TrpArgTrpLeuAlaValLeuG1yCysValProProSerLeuMetLeuLeuLeuLeuLeuCetCY200Qy181TrpArgTrpLeuAlaValLeuG1yCysValProProSerLeuMetLeuLeuLeuLeuLeuLeuLeuCetCY200Db601TGGCGCTGGCGGCGGCGTGGTGGGCTGTGGCCCCCCCCTCATGCTGCTGCTGGTGGC600CyTGGCGCTGGCGGGCGTGGGGCTGTGGCCCCCCCCCCCC	QY 241GlnSerPheHisLeulaleuleukrgGlnProGlyIleTyrLysProPheIleIle 259 Db 781 caccadGGGTTGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	<pre>30 ValifedInvalueupherthalavalablateuliewerdspargdaciyargarg 30 ValifedInvalueupherthalavalablateuliewerdspargdaciyargarg 31 i::i </pre>	Qy 360 SerAlaGInProValAspAlaSerValGiyLeuAlaTrpLeuAlaValGiySerMetCys 379 bb 1138 GCGGCGGAGCCTGGGATGTCCAAGTGGGACTGGCGTGGCTGTAGGCAGCATGTGC 1197 Db 1138 GCGGCGGAGCCTGGGATGTCCAAGTGGGACTGGCGTGGCTGGC	<pre>420 MetalaPheLeuValThrLysGlupheSerSerLeuMetGluValLeuArgProTyrGly 420 MetalaPheLeuValThrLysGlupheSerSerLeuMetGluValLeuArgProTyrGly 1318 ATGGCCTTTCTAGTGGCCAAAGAGTTCAGGGGGGGGGGG</pre>	QY460ProGlurthrLysGlyLysThrLeuGluGInIleThrAlaHisPheGluGlyArg477Db1438[111111111111111111111111111111111111

. . . .

us-09-886-954a-1.rst

Tue Sep 28 09:09:41 2004

:

-

~

<pre>ORGANISM Homo sapiens Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. Marmania; Euteleostom; r. Tomas, P., Kejariwal, A., AUTHORS Clark, A.G., Glanowski, S., Nielson, R., Tu, F., Murphy, B., Todd, M.A., Tanenbaum, D.M., Civello, D.R., Lu, F., Murphy, B., Adams, M.D. and Cargill, M. Mhite, T.J., Sninsky, J.J., Adams, M.D. and Cargill, M. TITLE TITLE Interring nonneutral evolution from human-chimp-mouse orthologous JOURNAL Science 302 (5652), 1960-1963 (2003) REFERENCE 2 (bases 1 to 1008) AUTHORS Clark, A.G., Glanowski, S., Nielson, R., Thomas, P., Kejariwal, A., Protiora, Retriora M., Manchau, M., Civello, F., Lu, Kejariwal, A., Protiora, Ramenaum, D.M., Civello, R., Thomas, P., Kejariwal, A., Protiora, R. Manch, M., Manch, T., Scharby, B., Protiora, R., Manch, M., Kejariwal, A., Protiora, R., Manch, M., Kejariwal, A.,</pre>	TITLE Direct Submission and Carpilly. TITLE Direct Submission and Carpilly. JOURNAL Submitted (16-NOV-2003) Celera Genomics, 45 West Gude Drive, Rockville, MD 2085, USB COMMENT This sequence was made by sequencing genomic exons and ordering FEATURES Location/Qualifiers Source /organism="Homo sapiens" /db Zref=taxon:9606" gene /11008 /dene="SLC2A8" ORIGIN /Iccus_tag="HCW5138"	ignment Scores: ed. No.: 4.13e-145 Length: 1008 ore: 1713.00 Matches: 332 ore: 332 ore: 99.10% Nismatches: 3 st Local Similarity: 99.10% Nismatches: 3 ery Match: 69.72% Indels: 0 ery Match: 29 Gaps: 0 -09-886-954A-1 (1-477) x AY414180 (1-1008)	<pre>143 ValTyrlleserGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGIn 143 ValTyrlleserGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGIn 1 GTTACATCTCCGaAATGGCCTACCCAGGGAGGTGGGGGGGGGG</pre>	0y 183 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuMetCysPhemet 202 1 11 <th>Db 241 CGGTFCCTGFTGGGGCTCGGAGGGCTGGGAGGGCCCCCCATCGGGGCTGAGGC 300 QY 243 PheHisLeuklaukrgGLnPrOG1y11eTy1ysProPheI1eT1eG1yvalSer 262 QY 243 PheHisLeuklaukrgGLnPrOG1y11eTy1ysProPheI1eT1eG1yvalSer 262 Db 301 TTTCACCTGGCCGGCGGCGCGGCGCGGCAGCCCGGCATCAGGGGCTTCATCATCGTCGGGGGTCTCC 360 QY 263 LeuWetAlaPheG1nG1nLeuSerG1yvalAsnalaValMetPheFyrAlaG1urhr11e 282 Db 361 CTGATGGCTTCCAGGAGGTCGGGGGGGGGGGGGGGGGTCAACGGCGTTCATCATCGTCGGGGGGTCATCG 360 QY 263 LeuWetAlaPheG1nG1nLeuSerG1yvalAsnalaValMetPheFyrAlaG1urhr11e 282 Db 361 CTGATGGCTTCCAGGAGGTCGGGGGGGGGGGGGGGGGGG</th>	Db 241 CGGTFCCTGFTGGGGCTCGGAGGGCTGGGAGGGCCCCCCATCGGGGCTGAGGC 300 QY 243 PheHisLeuklaukrgGLnPrOG1y11eTy1ysProPheI1eT1eG1yvalSer 262 QY 243 PheHisLeuklaukrgGLnPrOG1y11eTy1ysProPheI1eT1eG1yvalSer 262 Db 301 TTTCACCTGGCCGGCGGCGCGGCGCGGCAGCCCGGCATCAGGGGCTTCATCATCGTCGGGGGTCTCC 360 QY 263 LeuWetAlaPheG1nG1nLeuSerG1yvalAsnalaValMetPheFyrAlaG1urhr11e 282 Db 361 CTGATGGCTTCCAGGAGGTCGGGGGGGGGGGGGGGGGTCAACGGCGTTCATCATCGTCGGGGGGTCATCG 360 QY 263 LeuWetAlaPheG1nG1nLeuSerG1yvalAsnalaValMetPheFyrAlaG1urhr11e 282 Db 361 CTGATGGCTTCCAGGAGGTCGGGGGGGGGGGGGGGGGGG
160 SValginLeuMe 161 IIIIIIIIIIIIIIIIIII 481 TGTGGGGCTAAT 481 TGTGGGGCTAAT 180 UTTPAFEGTFpLe 180 UTTPAFEGTFpLe 180 UTTPAFEGTFpLe 180 UTTPAFEGTFpLe 180 UTTPAFEGTFpLe 180 UTTPAFEGTFpLe 541 GTGGCGCTGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	Qy240uGInSerPheHisLeuLeuLeuArgGInproGlyTleTyrLysProPheIleTleG1260Db721GCAGAGGTTTCACCTGGCGCGGCGCGGCGGCGCAGGCCCTTCATCATCGG780Oy260YValSerLeuMetAlaPheGInGInLeuSerGGCGGCGCGCGCGCGCGCGCGCGGCGG780Oy260YValSerLeuMetAlaPheGInGInLeuSerGGCGCGGCGCGCGCGCGCGGCGGCGGGGGGGGGGGGG		<pre>1001 locatewordtotteatecteatecteatecteatecteatectreatectreatectrate 380 uPheIleAlaGly-PheAlaValGlyTrpGlyProlleProTrpLeuLeuMetSerGluI 40 1141 CTTCATCGCGGAGGTC</pre>	115/ 420 1158 440 1174	QY460rodiuThrLysGlyLysThrLeuGluGInIleThrAlaHisPheGluGlyArg477Db1234[

÷

004
ō
0
CI
Ч
4
••
60
**
σ
o
ø
N
Sep
Ø
S
Tue
Þ
н

us-09-886-954a-1.rst

Page 5

- --- -. -----

..

<pre>303 ValLeuPherThrAlaValAlaLeuIleMetAspArgAlaGlyArgArgLeuLeuLeu 322 1 </pre>	323 ValLeuSerGlyValValWetValPheSerThrSerAlaPheGlyAlaTyrPheLysLeu 342 	<pre>343 ThrGInGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaProValSerAlaGln 362 111111111111111111111111111111111111</pre>	363 ProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCySLeuPhelle 382 	383 AlaGiypheAlaValGiyTrpGiyProIleProTrpLeuLeuMetSerGluIlePhePro 402 	403 LeuHisValLySG1yValAlaThrG1yIleCysValLeuThrAsnTrpLeuMetAlaPhe 422 	423 LeuvalThrLysGluPheSerSerLeuMetGluValLeuÅrgProTyrGlyAlaPheTrp 442 	443 LeualaSeralaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluThr 462 	<pre>463 LysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg 477 1 </pre>	<pre>BX395379 Homo sapiens NEUROBLASTOMA COT 50-NORMALIZED Homo sapiens COMA clone CSODD067F06 5-PRIME, mRNA sequence. SDA clone CSODD067F06 5-PRIME, mRNA sequence. DATA clone CSODD067F06 5-PRIME, mRNA sequence. BX3395379.1 GI:30620615 EST Homo sapiens (human) SM Homo sapiens (human) DM Homo sapiens (human) SM Homo sapiens (human) DM Homo sapiens (human) Contact: Genoscope (hy Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary was constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initrary and Constructed by Life Technologies, a division of Initr</pre>
Q	QY Db	QY dQ	QY Db	QY Db	QY Db	λο Ασ	VQ dQ	Q Dp	FEATURES BX395379 LOCESSION ACCESSION VERSION VERSION VERSION SCURCE AUTURS ORGANISM ORGANISM COMMENT COMMENT FEATURES FEATURES SOURCE

......

2004
09:09:41
Sep 28
Tue

/mol_type="genomic DNA" /db_xref="taxon:10090" <1>1000 /gene="SLC2A8" /locus_tag="HCM5138"	Alignment Scores: Pred. No.: 2.05e-124 Length: 1000 Score: 1485.50 Matches: 284 Percent Similarity: 91.07% Conservative: 22 Best Local Similarity: 84.52% Mismatches: 26 Query Match: 29.46% Indels: 4 DB: 29 Gaps: 2	 UB-09-086-554A-1 (1-477) x XY11182 (1-1000) UB-09-086-554A-1 (1-477) x XY11182 (1-1000) UP-09-086-554A-1 (1-477) x XY11182 (1-1000) UP-09-086-554A-1 (1-477) x XY11182 (1-1000) UP-09-086-564-564-564-564-564-564-564-564-564-56	Db 772 TCTGCATGTCAAGGGTGTGGCGTACCGGCATCTGTGTCTLAACTGGTTCATGGCCTT 831
Db 552 ACCATCTTTGAAGAGGCCAAGTTCAAGGACAGCAGCAGCCTGGGTCGTCGTCGTCGTGGGTGTY 611 Qy 301 11eG1nYa1LeuPheThrAlaValAlaAlaLeuIleMEtAspArgAlaG1YArgArgLeu 320 Db 612 ATCCAGGTGCTCTACAGGGCCTTAAGGACAGCAGCAGGAGGGGGGGG	0	 361 AladharovalAspAlaSerValOJyacuAlaThDucuAlaThDucuAlaThDucuAlaSerValOJYacuAlaSerValOJYAcuAlaSerValOJYacuAlaSerValOJYacuAlaSerValOJYacuAlaSerValOJYACUVACOANCTOSACTOSACACUANTOCANDSACAUACUVACUTASICTALSerValOJYACUVACUANTOCANDSACAUACUVACUTASICTALSERVALSER	rce

÷

•

us-09-886-954a-1.rst

eLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAlaPheTr ::: :::	832 TCTAGTGACCAAAGAGTTCAGCAGCGTCATGGAGATGCTCAGACCCTACGGTGCCTTCTG 891	<pre>442 pLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluTh 462 442 pLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluTh 462 892 GCTCACGCTGCTTCTGGGCTCTCTAGTGTCCTATTCACACTGACCGTTGTCCCTGGGGC 951</pre>	<pre>462 rLysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg 477 111111:::i11111111::i1111111111111111</pre>	BM545247 1085 bp mRNA linear EST 20-FEB-2002 AGROURT 6497266 NIH_MGC_124 Homo sapiens CDNA clone IMAGE:5726945 BM545247.1 GI:18777177 EST.1 GI:18777177 Homo sapiens (human) Homo sapiens (human) Homo sapiens Chordata; Craniata; Vertebrata; Euteleostomi;	<pre>1 (bases torings) NiH-MCC http://mgc.nci.nih.gov/. Nath-MCC http://mgc.nci.nih.gov/. Nath-MCC http://mgc.nci.nih.gov/. Nath-MCC http://mgc.nci.nih.gov/. Contact: Robert Strausberg, Ph.D. Email: cgaps-remail.nih.gov Tissue Procurement: Invitogen cDNA Library Preparation: Life Technologies, Inc. CDNA Library Preparation: Life Technologies, Inc. DNA Sequencing by: Agencourt Bioscience Corporation Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LINL at: http://image.llh.cov</pre>	<pre>plate: LLAW12720 row: d column: 18 High quality sequence stop: 679. I.ccation/Qualifiers 11085 11087 /organism="HOmo sapiens" /mol_type="mRNA" /molef="organis" /molef="organis" /lab_host="organis" /lab_host="organis" /lab_host="organis" /lab_host="organis" /molef="organis" /molef="organis"</pre>	tracking code 012."	<pre>tt Scores: 1.15e-114 Length: 1085 1.1379.00 Matches: 279 Similarity: 87.77% Conservative: 1 cal Similarity: 87.46% Mismatches: 6 atch: 12 Gaps: 33</pre>	-954A-1 (1-477) x BM545247 (1-1085)	
	3 qu	V 40	V A D	RESULT 6 BM545247 LOCUS DEFINITION DEFINITION ACCESSION VERRION VERRION SOURCE SOURCE SOURCE SOURCE	REFERENCE AUTHORS JUTILE JOURNAL COMMENT	FEATURES Source	ORIGIN	Alignment Sc Pred. No.: Score: Bercent Simi Best Local S Query Match: DB:	US-09-886-	

	202 MetProGluThrProArgPheLeuLeuThrGlnHisArgArgGInGluAlaMetAlaAla 221 	<pre>222 LeuArgPheLeuTrpGlySerGluGInTrpGluAspProFrolleGlyAlaGluGIn 241 221 </pre>	242 SerPheHisLeulaLeuleulagGInProGlyIleTyrLysProPheIleIleGlyVal 261 	262 SerLeuMetAlaPheGInGInLeuSerGlyValAsnAlaValMetPheTyrAlaGluThr 281 11111111111111111111111111111111111	<pre>282 IlePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValGlyValI1e 301 11111111111111111111111111111111111</pre>	302 GlnValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArgLeuLeu 321 	<pre>322 LeuvalLeuserGlyvalvalMetvalPheserThrSerAlaPheGlyAlaTyrPheLys 341</pre>	31nG1yG1yProG1yAsnSerSerHisValAlaIleSerAlaProValSerAla 36	seccridecaacrocrocecacerdeccarorocecorero	<pre>362 GlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCySLeuPhe 381</pre>	382 IleAlaGlyPheAlaVal-GlyTrpGlyProIleProfrpLeuLeuMetSerGluIlePh 401 	401 eProLeuHisValLySG1yValAlaThrG1yIleCySValLeuThrAsnTrpLeuMetA1 421 	421 aPheLeuValThrLysGluPheSerSerLeuMet 432 	t tillticulandomaduladoudaduladoudaduladadadadulada o* 3GluValLeuArgPro	.841 GAACACCTTCGAGGCTTGCGGGCGGGGCCGGCCCTCCATGCGCAAGGCAACGG 900	438TyrGlyAlaPheTrpLeuAlaSerAlaPhe 447 	<pre>SULT 7 A479842 SULT 7 A479842 B6479842 B6479842 FINITION 60252737371 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 60252737371 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 60252737371 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 6025273731 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 6025273731 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 6025273731 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 6025273731 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 602573731 NIH_MGC_21 Homo sapiens CDNA clone IMAGE:4650906 5', FINITION 602573731 NIH_MGC CLONE FILTERIA CLONE I CLONE FILTERIA F</pre>
qu	QY QQ	QY Db	VO P	QY Db	VO PD	VO da	A A	ò	qa	QY DP	QY DP	ଦ ସ	<i>v</i> o 4	8 8	qq	VO P	RESULT 7 BG419842 LOCUS DEFINITIC ACCESSION VERRION VERRION SOURCE ORGANIC REFERENCE AUTHORE

Tue Sep 28 09:09:41 2004

us-09-886-954a-1.rst

Qy 211 ThrfdInHisArgArgdIngluAlaM Db 482 ACTCAGCACAGGCGCCAGGGGCCAGGGGCCA Qy 230 nG1yTrpGluAspProProI16G1y Db 542 GGGCTGGGAAGACCCCCCGGGGGCCAGGG Qy 230 nG1yTrpGluAspProProI16G1y Db 542 GGGCTGGGAAGACCCCCCCGCGTGGG Qy 250 DFroG1yIleTyrLysProPheile Qy 250 DFroG1yIleTyrLysProPheile Db 602 GCGCGGGATCTTACAGCCCCCCCTCAACG Qy 250 DFroG1yValAshAlavalMetPherTyr Db 662 GGGGGTCAACGCCGTCATCAACGC Qy 270 rG1yValAshAlavalMetPherTyr Db 662 GGGGGTCAACGCCGTCATCATCATCATCATCATCATCATCATCATCATCATCAT	Db 722 [QY 310 laLeuTleMetAspArgAlaClYAry Db 782 CTCTCATCATGAGAGAGGGGGG Db 782 CTCTCATCATGAGAGAGGGGGGGGG QY 310 alPheSerThrSerAlaPheGlyAll Db 782 CTCTCATCATGAGAGAGGGGGGGGGGGG QY 330 alPheSerThrSerAlaPheGlyAll Db 840 TGTCAGGCCGGAGTGGCCTC-GGCGCG QY 350 erSerHisvalAlaTleSerAlaPr Db 840 CCTGGCC-GTGGCCATCTCGGGCCTT Db 898 CCTGGCC-GTGGCCATCTCGGGCCTT Db 898 CCTGGCC-GTGGCCATCTCGGGCCTT Dc 898 CCTGGCC-GTGGCCATCTCGGGCCTT Dc 898 CCTGGCC-GTGGCCATCTCGGGCCTT	ACCESSION BG700749 ACCESSION BG700749.1 GI:13970402 KEYWQRDS EST. BG700749.1 GI:13970402 KEYWQRDS EST. BG700749.1 GI:13970402 SOURCE Homo sapiens (human) ORGANISM Homo sapiens (human) ORGANISM Homo sapiens (human) AUTHORS Homo sapiens (human) AUTHORS NIH-MGC http://mgc.nci.nih. AUTHORS NIH-MGC http://mgc.nci.nih. TITLE Unpublished (1999) COURNAL Unpublished (1999) COMMENT Email: cgapbs-r@mail.nih.go Tissue Procurement: Miklos	TOSNN Jubrary Preparation: 1 TOSNN Jubrary Arrayed by: TT DNA Sequencing by: Trayte (DNA Sequencing by: Trayte (DNA Sequencing by: Trayte (Clone distribution: MGC cl found through the T.M.G.G.E http://image.llll.gov Plate: LLAM10709 row: p cc High quality sequence scop: Plate: LLAM10709 row: p cc High quality sequence scop: Corganism="Homo say (mol_type="mRNN" db_rref="taxon:96(/clone="type="hipp /lab.hore="type"hipp"
<pre>TITUE NATIONAL INSTITUES OF HEALTh, Mammalian Gene Collection (MGC) JOUTNAL Unpublished (1999) COMMENT Unpublished (1999) COMMENT Contact: Robert Strausberg, Ph.D. Fasue Procurement: ATCO Tissue Procurement: ATCO CDNA Library Preparation: Ling Hong/Rubin Laboratory CDNA Library Arrayed by: The I.M.A.G.E. Consortium (LLNL) DNA Sequencing by: Incyte Genomics, Inc. DNA Sequencing by: Incyte Genomics, Inc. Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: They requere stop: 820. FEATURES 1932 Algh quality sequence stop: 820. FEATURES 1932 /organism="Hone sapiens" /db Xref="taxon:966"</pre>	Consering and the second and the second and the second and the second and and and and and and and and and a	54.54% Indels: 7 12.54% Indels: 7 -477) x BG479842 (1-932) 65erLeuGInArgAlaProProAlaProArgLeuAspAspAlaAlaAlaAlaSer 65erLeuGInArgAlaPlaProProAlaProArgLeuAspAspAlaAlaAlaAlaSer 111111111111111111111111111111111111	122 111 182 131 131 302 362 362 191

...

QY 2 Db 4	211 ThrGInHiskrgArgGInGluAlaMetAlaAlaLeuArgPheLeuTrpGlySer-GluG1 230 1 </th
QY 2 Db 5	230 nGlyTrpGluAspFroProIleGlyAlaGluGInSerPheHisLeuAlaLeuLeuArgGl 250
QY 2 Db 6	<pre>250 nProGlyIleTyrLysProPheIleIleGlyValSerLeuMetAlaPheGlnGlnLeuSe 270</pre>
QY Db	270 rGlyValAsnAlaValMetPheTyrAlaGluThrIlePheGluGluAlaLysPheLysAs 290
QY 2 Db 7	290 pSerSerLeuAla-SerValValValGlyValIIeGInValLeuPheThrAlaValAlaA 310 291 111111111111111111111111111111111111
QY 3 Db 7	<pre>310 laLeulleMetAspArgAladlyArgArgLeuLeuLeuValLeuSerGlyValValMetV 330 310 </pre>
QY 3 Db 8	<pre>330 alPheSerThrSerAlaPheGlyAlaTyrPheLysLeuThrGlnGlyGlyProGlyAsnS 350 310 </pre>
QУ Db 8	50 erserhisvalAlaIleSerAlaProvalSerAla 361
RESULT 8 BG700749 LOCUS DEFINITION	BG700749 60269166F1 NIH_MGC_95 Homo sapiens cDNA clone IMAGE:4814451 5', mNA server
ACCESSION VERSION KEYWORDS SOURCE ORGANISM	BG700749 BG700749.1 GI:13970402 BST. FYomo sapiens (human) Homo sapiens
REFERENCE AUTHORS TITLE JOURNAL COMMENT	Education Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 MiH-MGC http://mgc.nci.nih.gov/. NiH-MGC http://mgc.nci.nih.gov/. National Institutes of Health, Mammalian Gene Collection (MGC) Unpublished (1999) Contact: Robert Strausberg, Ph.D.
	<pre>Email: cgapbs-r@mail.nih.gov Tissue Procurement: Miklos Palkovits, M.D., Ph.D. CDNA Library Preparation: Michael J. Brownstein (NHGRI), Shiraki CoNA Library Arrayed by: RIKEN) Toshiyuki and Piero Carninci (RIKEN) DNA Sequencing by: Incyte Genomics, Inc. DNA Sequencing by: Incyte Genomics, Inc. Clone distribution: MGC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at: http://image.llnl.gov</pre>
FEATURES source	High quality sequence stop: 789. Location/Qualifiers 1. 830
	/organism="Homo" sapiens" /uol_type="mRNA" /db_xref="taxon:9606" /dib_tose="TMAGE:4814451" /tissue_type="hippocampus" /tib_hose="hippocampus" /clone_lib="NHH_MGC 95" /note="Organ: brain; Vector: pBluescriptR (modified pBluescript KS+); Site_i: BanHI; Site_2: Sall-XhoI
	[gtcgag); Oligo-dT primed using primer

004
ō
0
N
Ч
4
**
σ
Ö
••
თ
õ
28
Sep
Tue

-

.

us-09-886-954a-1.rst

Db785 ATCCCTTGCTCATGTCAGAGATTTTCCCTCTTGCTGTC 826RESULT 9BE334832BI334832BI334832BI334832LOCUSBI334832DEFINITION 60299855F1 NHH_MGC_12 Homo sapiens CDNA clone IMAGE:5141007 5',ACCESSION B1334832DEFINITION 6129489VERSION B1334832.1 G1:15019489KEYWORDSSOURCEHomo sapiens (human)ORCANISM Homo sapiens (human)ORCANISM Homo sapiens (human)	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. Marmalia; Euter://mgc.nci.nih.gov/. AUTHORS NNH-MGC http://mgc.nci.nih.gov/. TITLE National Institutes of Health, Mammalian Gene Collection (MGC) JOURNAL Unpublished (1999) COMMENT Contact: Robert Strausberg, Ph.D. Email: cgapbs-remant: nih, gov Tissue Procurement: ATCC			ORIGINTechnologies."Alignment Scores:9.14e-105Length:991Precal. No.:9.14e-105Length:991Precent Similarity:65.05%Matches:290Best Local Similarity:63.74%Mismatches:21Query Match:51.67%Indels:140DB:12Gaps:6US-09-886-954A-1 (1-477) x BI334832 (1-991)	QY 1 MetThrProGluAspDroGluGluThrGlnProLeuleuGlyProFroGlyGlySerAla 20 V 1 <	 41 GlyPheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnÅrgAlaAlaProPro 72
<pre>5'-TTTTTTTTTTTTTVN-3', size-se insert size 2:5 kb and normalized primary library enriched for ful constructed using the Cap-trapper preparation). Library constructe (NIMH/NHGRI, National Institutes is a NIH_MGC Library." is a NIH_MGC Library." 5e-107 Length: 1293.00 Matches:</pre>	<pre>imilarity: 96.01% il Similarity: 96.01% ch: 122.63% ch: 122.63% 12 13 AlaCySGlyValAlaSerLeuVal 13 AlaCySGlyValAlaSerLeuVal 13 AlaCySGlyValAlaSerLeuVal 5 AccredeGararneccreaternecenter </pre>	ValArgGlyLeuLeuGlySerCysValGlnLeuMetValValValGlyIleLeuLeuLalla 	Qy 193 SerLeuMetLeuLeuLeuWetCyspheMetProGluThrProArgPheLeuLeuThrGln 212 Db 185 TCCCTCATGCTGCTTCTCATGGTGCTTCATGGTGCGTGTTCCTGCGGGGTTCCTGCTGG 244 Cy 213 HisArgArgGTnGLuAlaMetAlaAlaLeuArgPheLeuTrpGlySerGluGInG1yTrp 232 Cy 213 HisArgArgGTnGLuAlaMetAlaAlaLeuArgPheLeuTrpGlySerGluGInG1yTrp 232 Cy 213 HisArgArgGTnG1uAlaMetAlaAlaLeuArgPheLeuTrpGlySerGluGInG1yTrp 232 Db 245 CACGGGGGGCGGGGGGGGCGCGCGCGGGGTTCCTGTGGGGGCTGG 304 Cy 233 GluAspProProIleGlyAlaGluGInSerPheHisLeuAlaLeuLeuArgGInProGly 252 Db 305 GluAspProProIleGlyAlaGluGInSerPheHisLeuAlaLeuLeuArgGInProGly 252 Db 305 GluAspProProIleGlyAlaGluGInSerPheHisLeuAlaLeuLeuLeuArgGInProGly 252	<pre>253 IleTyrLysProPheIleIleGlyValSerLeuMetAlaPheGlnGlnLeuSerGd 253 IleTyrLysProPheIleIleGlyValSerLeuMetAlaPheGlnGlnLeuSerGd 365 ATCTACAAGCCCTTCATCATCATCGGCGGTCTCCCTGaTGGCCTTCCAGCAGCTGGC 273 AsnAlaValMetPheTyrAlaGluThrIlePheGluGluAlaLysPheLysAspSe 273 AsnAlaValMetPheTyrAlaGluThrIlePheGluGluAlaLysPheLysAspSe 273 AscGCCGTCATGTTCTATGCAGGGGCCTTTTGAAGGGCCAGGTTCAAGGACAG 293 LeuAlaSerValValValGlyValIleGlnValLeuPheThrAlaValAlaValAlaLaL 293 LeuAlaSerValValValGlyValIleGlnValLeuPheThrAlaValAlaValAlaLaL 294 LeuAlaSerValValValGlyValIleGlnValLeuPheThrAlaValAlaValAlaLe 295 CTGACCTCATGGTCGTGAGGGACACCTTCAAGTACATCATCAAGACAGCAGCAGCAGGACAG 297 CTGACTCGTTCGTGGGGGGCAGCATCATGAGTACCTCATCAAGACAGCAGCAGGACAG 298 LeuAlaSerValValValCACTCATGGAGGACAGCAGCAGGACAGCAGCAGGACAGCAGGACAGCAG</pre>	<pre>313 MetSpargalacitysrgsrgsuccenteureuralsecondecondecond 313 MetSpargalacitysrgsrgsuccenteureuralsecsrG1valvalmetvalpheSer 1 </pre>	Db605ACGAGTGCCTTCGGCGCTACTTCAAGCTGACCCAGCGGGGCGCTGCCCC64QY353ValAlatleSerAlaProValSerAla-GInProVal-AspAlaSerValG1yLeuAlaT372QP353ValAlatleSerAlaProValSerAla-GInProVal-AspAlaSerValG1yLeuAlaT372Db665GTGGCCATCTGGGGGCCTGCTCGCCAGCGGGGGGGGGGG

.

4
0
ο
200
41
~
ö
:
60
0
28
Sep
Tue

•

-

RESULT 10 AY414181 LOCUS DEFINITION ACCESSION VERYWORDS SOURCE ORGANISM	4 C C 4 4 S C C 4 6
REFERENCE AUTHORS TITLE	<pre>1 (bases 1 to 1004) ClarkA.G. Clanowski,S., Nielson,R., Thomas,P., Kejariwal,A., Todd,M.A., Tanenbaum,D.M., Civello,D.R., Lu,F., Murphy,B., Ferriera,S., Wang,G., Zheng,X.H., White,T.J., Sninsky,J.J., Adams,M.D. and Cargill,M. Inferring nonneutral evolution from human-chimp-mouse orthologous</pre>
JOURNAL PUBMED REFERENCE AUTHORS	<pre>5 5 (5652), 1960-1963 (2003) 1 to 1004) . Tannowski,S., Nielson,R., Thomas,P., Kejar . Tannaham,D.M., Civello,D.R., Lu,F., Murphy 5., Wang,G., Zheng,X.H., White,T.J., Sninsky,</pre>
TITLE JOURNAL COMMENT FEATURES SOURCE	Adams,M.D. and Cargill,M. Direct Submission Submitted (16-NOV-2003) Celera Genc Rockville, MD 20850, USA This sequence was made by sequenci Them based on alignment. Location/Qualifiers 1. 1000 /organism="Pan troglodyte: /mol_type="genomic DNA" /d_tref="taxon:9598"
ORIGIN	άΰ
Alignment S Pred. No.: Score: Percent Sim Best Local Query Match DB:	<pre>it Scores: 1.04e-104 Length: 1004 1269.00 Matches: 263 Similarity: 79.88% Conservative: 3 al Similarity: 78.98% Mismatches: 67 tch: 51.65% Indels: 0 29</pre>
US-09-886-9	954Å-1 (1-477) × AY414181 (1-1004)
Db 1	<pre>145 IleserGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGlnLeuMet 164 11111111111111111111111111111111111</pre>
ov dd	<pre>165 ValValValValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArgTrpLeu 184 11111111111111111111111111111111111</pre>
QY 1	185 AlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCysPheMetProGlu 204
Db 1	123 NININANNANANNANNANANANANANANANANANANANA
QY 2	205 ThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeuArgPhe 224
Db 1	183 NINKININNINNINNINNINNINNINNINNINNINNINNI
QY AU	225 LeuTrpGlySerGluGlnGlyTrpGluAspProProIleGlyAlaGluGlnSerPheHis 244 243 NAWANAWANANANANANANANANANANANANANANANAN

<pre>http://image.llnl.gov Plate: NDAM456 row: f column: 09 High quality sequence stop: 618. Location/Qualifiers source 1.875 /organism="Homo sapiens" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="mRNN" /mol_type="media" /lone="mRNN" /mol_type="media" /lone="mRNN" /mol_type="media" /mol_type=</pre>	Alignment Scorest: 266-104 Enerth: 875 Alignment Scorest: 1277,000 Conserverts: 875 Scorest: 1277,000 Conserverts: 875 Scorest: 1277,000 Conserverts: 875 Scorest: 1277,000 Conserverts: 875 Scorest: 1277,000 Conserverts: 875 Scorest: 124,000 Manabalacitylici
303 CTGGCCTGGTGGGGGGGCGGCATCTACAAGCCCTTGGTCGGGGGTCTCCTGATG 362 265 AlaPheGInG1nteuSerGiyValAsnAlaValMstPheTyrAlaCluThrI1ePheGlu 284 111111111111111111111111111111111111	QY 345 G1Yq1yProG1YangerSentHisVh1A11eSenharbrachaSenharbracha3 564 QY 355 StaphlaserValG1YLemb1ATTPleuh1ATTPleuhenherBerlehal1 364 QY 355 StaphlaserValG1YLemb1ATTPleuh1ATTPleuhenherBerChandscorcoccoccoccoccoccoccoccoccoccoccoccocc

^

Tue Sep 28 09:09:41 2004

-

qq	- 20	20
oy.	44 L	.euGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProProAlaProArg 63
дD	50 -	20
δy	64 L	euAspAspAlaAlaAlaSerTrpPheGlyAlaValValThrLeuGlyAlaAlaAlaGly 83.
ЧU	50 -	
δγ	84 G	GlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeuLeuCys 103
Ц	50 -	
QY	104 S	servalProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspValTrpMetLeu 123
дQ	50 -	20
δΛ	124 L	euGlyGlyArgLeuLeuThrGly
дD	- 13	
VO .	4	
qu	54	CATCLUCGAAAATUGGUUAGCUGGGAGGAGGGUUGGUUGGGUUGG
<i>ත</i> ස	164 M 114 A	MerValValGLyILeLeubeuAlaTyrreuAlaGLyIrpValLeuGLUIrpArgirp 183
ò	84	uAlaValLeuGlyCysValProProSerieuMetLeuLeuLeuMetCysPheMetPro 20
qa	149 -	149
QY	204 G	GluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeuArg 223
đđ	149 -	149
QY	224 F	GluGlnGlyTrpGluAspProProL
qu	150 -	
QY	243 e	EHisLeuAlaLeuLeuArgGlnProGlyIleTyrLysProPhelleIleGlyValSerLe 263
qq	156 T	CTGGCCCTGCCGGCAGCCCGGCATCTACAGCCCCTTCATCGCGCGCG
Q	63	heGlnGlnLeuserGlyValAsnAlaValMetPheTyrAlaGluThrIlePh 28
q	16.0	UTTCCAGCAGCTGTCGGGGGGTCAACGCCGTCATGTTCTATGCAGAGACCATCTT 27
νς d	283 e 276 276 T	edlugluhlafysPheLysAspSerSerLeuhlaSerValValVall1yVallleGl1Va 303
, ov	E 0	LeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArgLeuLeuLeuVa 32
, da	36 0	
Q	323	SerGlyValValMetValPheSerThrSerAlaPheGlyAlaTyrPheLys
qa	396	CAGGTGTGGTCATGGTGTGTGTGTGTGGCGCGCCTTCCACCTTCC
5	3 4 3 I	rcGhGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaProValSerAlaGlnPr 363
qu	456 0	GERTER CONTRACT CONT
λο Γ	63	LeuPheIleAl
qQ	10	STTGATGCCAGCGTGGGGCTGGCCTGGCCGTGGGCGGGGGGGG
QY	383	adlypheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGluIlePheProLe 403

•

•

us-09-886-954a-1.rst

QY1MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla20Db47ATGACGCCGAGGGACCCAGGGGACACCCAGCGGCTTTTG[[][][][]][]]11QY21ProArgGlyArgArgValPheLeuAlaAlaAlaAlaAlaAlaLeuGlyProLeuSeGGCGCG106QY21ProArgGlyArgArgValPheLeuAlaAlaAlaAlaAlaAlaLeuGlyProLeuSeGGCGCG106QY21ProArgGlyArgArgValPheLeuAlaAlaAlaAlaAlaAlaLeuGlyProLeuSeGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	<pre>81 AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLystLeuSerLeu 10 287 GCGGGGGGGGGGGGGGCGGGCGGGGGGGGGGGGGGGG</pre>	Db 587 AGTGGGGTGGGTGGGGTGGGGTGGGGTGGCCCTCCATGG 646 QY 200 CyspheMet ProGluThrProArgPheLeuLeuThrGInHisArgArgGInGluAlaMet 219 Db 647 TGCTrCATGCCGAGACCCGAGGTGGCGTGGCGCGGGAGGCCATG 706 QY 220 AlaAlaLeuArgPheLeuTrpG1y6rGluGInGlyTrpGluAspProProTIGGIyala 239 QP 220 AlaAlaLeuArgPheLeuTrpG1y6rGluGInGlyTrpGluAspProProTIGGIyala 239 Db 707 GCGCTGGGCTTCCTGGGGGCTGGGGGGGGGGGAGAGCCATGGGGCCATG 706 QY 220 AlaAlaLeuArgPheLeuTrpG1y6rGluGInGlyTrpGluAspProProTIGGIyala 239 Db 707 GCGCTGGGCTTCCTGGGGGCTGGGGGGGGGGGGGGGGG	<pre>RBSULT 14 BG717034 BG717034 BG717034 BG717034 BG717034 BG717034 BG717034 MRNA Sequence. ACCESSION BG717034.1 GI:13996221 XERSION BG717034.1 GI:13996221 XERSION BG717034.1 GI:13996221 XERSION BG717034.1 GI:13996221 SOURCE Homo sapiens (human) ORGANISM Homo sapiens (human) ATTHE Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 777) AUTHORS NHHMGC http://mgc.nci.nih.gov/. TITLE National Institutes of Health, Mammalian Gene Collection (MGC) JOURNAL Unpublished (1999)</pre>
AGAGATCTTCCCTCT 635 PLEUMETALAPHELE 423 PLEUMETALAPHELE 423 AGCTCATGGCCTTTCT 695 AGCTCATGGCCTTTCT 695 AGGAGCCTTCTGGCT 755 A1 A10 A17 A17 A17 A17 A27 A17 A27 A27 A27 A27 A27 A27 A27 A2	1145 5', 1145 5', Leostomi; (MGC)	can be ; Site 2: nally	
Db 576 CGGCTTTGCGGTGGGCGGGCGCATCCCCTGGGCTCCTCATGTCAGAGATCTTC QY 403 UHisValLySG1YValAlaThrG1yIleCysValLeUThrAsnTrpLeUMetAla Db 636 GCATGTCAGGGCGTGGCGCACAGGCATCTGCGGTCCTCACGAGAGATCTGGCC QY 423 UValThrLySG1UPheSerSerLeUMetGUVALLEUATGPFCTYG1YAlaPhe Db 636 GCATGTCAGGGCGTGGCGCACAGGCATCTGCGTCTCACCAACTGGCTCAGGGCTCAGGGCGTCAGGGCGTCGGGCGTCTGCGGGCGTCGGGCGTCTGCGGGCGTCTGGGGCGTCTGGGGCGTCTGGGGGG	<pre>SULT 13 SULT 13 CUS CUS ESSTON 602522606F1 NIH_MGC_20 Homo se mRNN sequence. CESSION 602522606F1 NIH_MGC_20 Homo se mRNN sequence. CESSION 86478000.1 GI:13410279 RSION B6478000.1 GI:13410279 RSION B6478000.1 GI:13410279 RSION 86478000.1 GI:13410279 MORDS EST. Momo sepiens (human) SRCANISM Homo sepiens (human) AUTHOR NUTHORS NIH-MGC http://mgc.nci.nih.gov Tissue Procument: ATC/DCTD/ CONA LIDRARY AFTAYOL MY LIDRARY ATTANG DV CONA LIDRARY ATTAYED DV CONA LIDRARY</pre>	<pre>DATA Sequencing by: incyce denomics, the.</pre>	Addptor:Gdaptor

us-09-886-954a-1.rst

TOSANIYMKL ANG FLEFC CATTINGI (KIKKN) CDNA Library Arrayed by: The I.M.AG.E. Consortium (LLNL) DNA Semiencing by: Traver Genomics Tro	qu	516 GTGCAGCTAATGGTCGTCGT
Clone distribution: MCC clone distribution information can be found through the I.M.A.G.E. Consortium/LLNL at:	DA DA	181 TrpArgTrpLeuAlaValLe
http://image.llnl.gov Plate: LLAM1028 row: i column: 23 High quality sequence stop: 722. FEATURES Location/Qualifiers	Qy dd	201 PheMetProGluThrProAr
<pre>source 1777 /organism="Homo sapiens" /onl_type="mRNA" /db_tref="taxon:9606"</pre>	QY Db	221 AlaLeuArgPheLeu-TrpG
/clone="IMAGE:4821598" /lab_host="DH10B" /clone_lib="NIH MGC 97"	λο 4Ω	240 uGlnSerPheHisLeuAlaL 1
<pre>/note="Organ: testis; Vector: pBluescriptR (modified pBluescript KS+1; Site 1: BamH1; Site 2: Sal1-XhoI (gregag); Oligo-dT primed using primer 5TTTTTTTTTTTTVN-3', size=selected for average insert size 2.2 kb and normalized to ROT 5. This is a</pre>	RESULT 15 B1757409 LOCUS DEFINITION	Z
primary library enriched for full-length clones and constructed using the Cap-trapper method (Carninci, in preparation). Library constructed by M. Brownstein (NIWH/NHGRI, National Institutes of Health). Note: this is a NIH_MGC Library."	ACCESSION VERSION KEYWORDS SOURCE ORGANISM	_
Alignment Scores:1.3e-101Length:777Pred. No.:1.3e-101Length:777Score:1233.00Matches:243Percent Similarity:98.39%Conservative:1Best Local Similarity:97.98%Mismatches:3Query Match:50.18%Indels:2DR:70777104104	REFERENCE AUTHORS TITLE JOURNAL COMMENT	Eukaryota; Metazoa; Ch Mammalia; Eutheria; Pr B 1 (bases 1 to 889) S NIH-MCC http://mgc.nci National Institutes of L Unpublished (1999) Contact: Robert Straus Frail. combert straus
09-886-954A-1 (1-477) x BG717034 (1-777)		Tissue Procurement: cDNA Library Prepa
Qy 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerala 20 Db 111111111111111111111111111111111111		CDNA Library Array DNA Sequencing by: Clone distribution found through the I
QY 21 ProArgGlyArgArgValPheLeuAlaAlaAlaAlaAlaAlaAlaLeuGlyProLeuSerPhe 40 Db 96 CCCCGCGGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGC	FEATURES	http://image.llnl.g Plate: LLAM11500 r High quality sequen Location/Q
Qy 41 GlypheAlaLeuGlyTyrSerSerProAla11eProSerLeuGlnArgAlaAlaProPro 60 Db 11 <td>nos</td> <td>ource 1889 /organism="Ho /mol_type="mR /db_rref="tax"</td>	nos	ource 1889 /organism="Ho /mol_type="mR /db_rref="tax"
Qy 61 AlaProArgLeuAspAspAlaAlaAlaAlaSerTrpPheGIyAlaValValThrLeuGlyAla 80 01		/clone="IMAGE /lab_host="DH /clone_lib="N /note="Organ:
QY 81 AlaalaGlyGlyValLeuGlyGlyTyrpLeuValAspArgAlaGlyArgLysLeuSerLeu 100 DD 276 GCGGCGGGGGGGGGGCTGGCTGGCTGGCTGGCGCCGCGCGGCG		Site_2: EcoRV male brains, primed and di upon cloning)
Qy 101 LeuLeuCysSerValProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspVal 120 (range 1-3 kb. full-length (Invitrogen). this is a NIH
	ORIGIN Alignment S Pred. No.:	cores:
Qy 141 AlaProValTyrIleSerGluILeAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160 Db 456 GCCCGGGFTCTACATCTCCGGAAATCGCCTACCAGCAGCAGCCGGGGFTTGCTCGGGCTCCTGG 515	ecore: Percent Best Loc Query Ma	score: 120.00 Percent Similarity: 78.87% Best Local Similarity: 78.67% Query Match: 50.08%

٠

ValGlnLeuMetValValValGiyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGlu 180 	TrpArgTrpLeuklavalLeuGlyCysValProProSerLeuketLeuLeuLeuketCys 200	PheMet ProgluthrProArgPheLeuLeuthrGlnHisArgargGlnGluAlaMetAla 220	AlaLeuArgPheLeu-TrpGlySerGluGlnGlyTrpGluAspProFrolleGlyAlaGl 240	<pre>B1757409 B89 bp mRNA linear EST 25-SEP-2001 B1757409 B89 bp mRNA linear EST 25-SEP-2001 mRNA sequence. mRNA sequence. solutions appens (human) Homo sapiens (human) Homo sapiens (human) SM Homo sapiens (human) Homo sapiens (human) SM Homo sapiens (human) SM Homo sapiens (human) Homo sapiens (human) SM Homo sapiens (human)</pre>	<pre>>://image.llnl.gov ce: LLAM11500 row: g column: 11 1 quality sequence stop: 877. 1 ccation/Qualifiers 1 ccation/Qualifiers</pre>	<pre>/organism="Homo sapiens" /organism="Homo sapiens" /db_xref="taxon:9606" /db_xref="HMGS:199778" /db_host="HMGS:199778" /db_host="HMGS:199778" /clone_lib="NIH_MGC_114" /note="forgan: brain; Vector: pCMV-SPORT6; Site_1: NotI; /note="forgan: brain; Vector: pCMV-SPORT6; Site_1: NotI; /site_2: EcoRV (destroyed); RNA source anonymous pool of 6 male brains, age range 23-7 yo. Library is oligo-dT primed and directionally cloned (EcoRV site is destroyed upon cloning). Average insert size 1.5 kb, insert size range 1-3 kb. Library is normalized and mortiched for full-length clones and was constructed by C. Gruber full-length clones and was constructed by C. Gruber full-length clones and was c</pre>	this is a NIH_MGC LIDTARY."	: 2.72e-101 Length: 889 1230.50 Matches: 265 +v: 78.87% Conservative: 0
161 ValG1 516 GTGCA	181 TrpAr 576 TGGCG	201 PheMe 636 TTCAT	221 AlaLe	BI75740 BI75740 BI75740 BI75740 BI75740 BBI75740 CONTALL CONTALL CONTALL CONTALL CONTALL CONTALL CONTALL	http:// Plate: High qu			scores: Milarity:
Db D	QY 1 Db 5	QY Db	QY 40	RESULT 15 RESULT 15 105US DEFINITION ACCESSION VERSION VERSION VERSION CORANISM ORGANISM ORGANISM AUTHORS JUUTHORS JUUTHORS JUUTHORS COMMENT	FEATURES)	ORIGIN	Alignment Scores: Pred. No.: Score: Percent Similarity:

•

DB:	12 Gaps: 1
3-60-SU	386-954A-1 (1-477) x BI757409 (1-889)
δλ	ITyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGln 1
ЧŨ	8 GTCTACATCTCCGGAAAATCGCCTACCCAGGCGGGGGGGG
QY	<pre>3 LeuMervalValValValGlyIleLeuLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArg 18</pre>
qa	TAATGGTCGTCGGCATCCTCCTGGCCTACCTGGCCA
δ	rpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCysPheMet 2
дC	13
QY	3 ProGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeu 22
qu	13
δλ	3 ArgPheLeuTrpGlySerGluGlnGlyTrpGluAspProProIleGlyAlaGluGlnSer 2
đũ	GAG 13
QY	PheHisLeuAlaLeuLeuArgGlnProGlyIleTyrLysProPheIleIleGlyValSe 26
qq	rescontectedededededededededededededededededed
QY	aPheGInGInLeuSerGlyValAsnAlaValMetPheTyrAlaGluThrIl 28
qЦ	SCCTTCCAGCTGTCGCGGGGGGGGGGGGGGGGGGGGGGGG
QY	82 ePheGluGluAlaLysPheL
qq	0 CTTTGAAGAGGCCAAGTTCAAGGACAGGCAGGCTGGGCGTCGTCGTGGGTGTCATCCA 3
δλ	02 nValLeuPheT
qŭ	0 GETÉCTÉTICACAGETETGÉCÉGÉCECTETETTÉTÉGÉACAGÉGÉGÉGÉGÉGÉGÉGÉGÉGÉGÉGÉTÉCT 3
QY	22 uValLeuSerGlYValValMetValPheSerThrSerAlaPheGlYAlaTyrPheLySLe 3
qa	Gréérchréérerréacacéaérécérrééécéceraérreagéer 43
QY	CGlnGlyClyProGlyAsnSerSerHisvalAla1leSerAlaProvalSerAlaG1 36
q	cereseaacreetesecaresecareresecererereredea 49
QY	62
qq	BATGCCAGCGTGGGCTGGCCTGGCCGGGGGGGGCAGCATGTGCCTCTTCAT 55
oy .	82 eAlaGlyPheAlaValGlyTrDGlyProIleProTrpLeuLeuMetSerGluIlePhePr
qq	TTGCGGTGGGCCCGATCCCCTGGCTCCTCATGTCAGAGATCTTCCC 61
Q	AlaThrGlyIleCysValLe
qu	STCAAGGGCGTGGCGATCTGCGTCCTCACCACTGGCTCATGGCCTT 67
δλ	LeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAlaF
qu	AGTTCAGCAGCTCATGGAGGTCCTCAGGCCCTATGGAGCCTTCTG
QY	LaSerAlaPheCysIlePheSerValLeuF
ф	IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Q	ysThrLeuGluGlufleThrAlaHisPheGluGlyArg 4
qq	GAAAGACTCTGGAACAAATCACAGCCCATTTTGAGGGGCGA 8

Search completed: September 28, 2004, 04:16:06 Job time : 2866 secs

This Page Blank (uspto)

2004
0
4
••
σ
ö
••
σ
0
2 8
Sep
Tue

Human pol Human pro Rat GLUTX

Ab190126

Human SLC ful sol GLU

sol

Drosophil Drosophil Drosophil Drosophil Drosophil Drosophil

Human ful

Human Human Human Human

Drosophil Arabidops Drosophil Drosophil Arabidops

Drosophil Human tra Arabidops Arabidops

Drosophil Drosophil

Drosophil

Arabidops Arabidope

Command line parameters: MODEL=frame+ p2n.model -pEV=xlp -0=/cogr2_1/USPTO spool_p/US0986554/runat_27092004 170631 13378/app_query.fasta_1.647 -D=/cogr2_1/USTO spool_p/US0986554/runat_27092004 170631 13378/app_query.fasta_1.647 -D=N Geneseq_29Jano4 - Terr= + END=-1 - MATRIX=blosum62 - TRANS=human40.cdi -LOOPEXT=0 - UNITYS=bits - STATE=1 - END=-1 - MATRIX=0.100 - THR_MIN=0 - ALIGN=15 -LOOPEXT=0 - UNITYS=bits - STATE=1 - END=-1 - THR_MAX=100 - THR_MIN=0 - ALIGN=15 -LUST=45 - DOCALIGN=200 - THR_SCORE=pct - THR_MAX=100 - THR_MIN=0 - ALIGN=15 -UNITYS=bits - STATE=1 - END=-1 - TARSIZE=500 - MINLEN=0 - MAXLEN=200000000 -USER=US0986554 @CGN 1 1 708 @runat_2709204 170631 13378 - NCPU=6 - TCPU=3 -NO_MMAP - LARGEQUERY - NEG SCORES=0 - MAIT - DSFBLOCK=100 - LONGLOG -USER=US0986554 @CGN 1 1 708 @runat_2709204 170631 13378 - NCPU=6 - TCPU=3 -NO_MMAP - LARGEQUERY - NEG SCORES=0 - MAIT - DSFBLOCK=100 - LONGLOG -USER=US0986554 @CGN 1 1 708 @runat_2709204 170631 13378 - NCPU=6 - TCPU=3 -NO_MMAP - TARGEQUERY - NEG SCORES=0 - THREADS=1 - XGAPOP=10 - XGAPOP=6 -FGAPEXT=0 - YGAPOP=10 - YGAPEXT=0.5 - DELOP=6 - DELEXT=7 Abz24794 Human sol Abz24792 Human sol Abz09552 Human tra Abz24793 Human sol Azf55865 Human GLU Azf55866 Human GLU Azf55867 Murine GL Abx34029 Human can 00:52:18 ; Search time 484 Seconds (without alignments) 4186.757 Million cell updates/sec Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution. 2457 1 MTPEDPEETQPLLGPPGGSA.....CVPETKGKTLEQITAHPEGR 477 Description 6747726 GenCore version 5.1.6 (c) 1993 - 2004 Compugen Ltd. - nucleic search, using frame_plus_p2n model Total number of hits satisfying chosen parameters: 3373863 seqs, 2124099041 residues SUMMARIES 0.5 7.0 7.0 Listing first 45 summaries ABZ24792 AAD09552 ABZ24793 AAF55865 AAF55866 AAF55866 AAF55866 ABZ24794 Xgapop 10.0 , Xgapext Ygapop 10.0 , Ygapext Fgapop 6.0 , Fgapext Delop 6.0 , Delext geneseqn2001as:* geneseqn2001bs:* geneseqn2003as:* geneseqn2003bs:* geneseqn2003cs:* 2004, Post-processing: Minimum Match 0% Maximum Match 100% genesegn2004s: Geneseq_29Jan04:* genesegn1980s:* genesegn1990s:* geneseqn2000s:* geneseqn2002s:* ß length: 0 length: 200000000 US-09-886-954A-1 Query Match Length DB September 28, 1445 1856 2080 1873 2217 2217 2087 2087 1954 Copyright **BLOSUM62** 100.0 100.0 10: .: 80 z Minimum DB seq Maximum DB seq 2457 2457 2457 2448 2448 2448 2162.5 2150 2150 2123.5 Perfect score: Scoring table: Score OM protein Sequence: Searched: Database Run on: 8 1 9 1 4 3 5 Title: Result No.

	BL9012	1257	5587	A8407	Z2479	9433	22479	75587	K9428	1388	1338	1706	ABL11183	0221	1388	1706	1173	1338	3631	0248	0248	3909	1118	4045	1585	1711	L0221	1529	C4529	BL0221	1111	221	3231.	986	4626	4624	4626	ALIGNMENTS	
,	6	4	4	5	5	4	2	4	4	4	4	4	4	4	4	4	2	4	ĥ	4	4	m	4	m	т	4	4	e	m	4	4	4	5	5	4	4	4		
	n. H	46	5	30	35	99	48	54	17	41	72	51	1662	63	71	21	52	47	74	61	61	68	01	75	6	76	8	68	74	ъ С	60	39	6	68	235	ģ	235		
	ж	m.	۰. י	۹.	۹.	۹.	۹.	8.	ف	~	2	3	29.9	ω.	ω.	8.	5.			5	5.		ف	ف	ъ.	÷.	ы.	م	0		च		-		÷.	.	-		
		554.	72.	58.	•	58.	58.	4	04.	•	88.	α	734	70	•	68	•	5	70.	•	66.	62.	66		52.	4	4	4	4	\sim	0	60	98.		51.	91.	16		
¢	ית	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	0 E	31	32	e e	34	ი ო	36	37	38	39	40	41	42	43	44	45		E
															υ			υ												υ	υ	υ							10

RESULT 1 ABZ24794

DNA encod DNA encod DNA encod

Aas46267 Aas46243 Aas46261

Drosophi Prokaryot Prokaryot

Drosophi Drosophi

> BP. ABZ24794 standard; cDNA; 1445

ABZ24794;

(first entry) 07-APR-2003

Human solute carrier type 2A nucleic acid.

Human; solute carrier type 2A; SLC2A; glucose transporter; p53; cancer; cytostatic; gene therapy; gene; ss.

Homo sapiens

Location/Qualifiers
7. .1440 /*tag=

Key

/*tag= a /product= "Human SCL2A"

W0200298467-A1 12-DEC-2002

03-JUN-2002; 2002WO-US017419.

05-JUN-2001; 2001US-0296076P. 10-OCT-2001; 2001US-0328605P. 15-FEB-2002; 2002US-0357253P.

(EXEL-) EXELIXIS INC

4 0

99 6 88 0 87 5 86 4

100.0 99.6

Li D, Funke RP; Belvin M, Francis-Lang H, Friedman L, Plowman GD,

WPI; 2003-201283/19. P-PSDB; ABP58364.

Identifying candidate p53 pathway modulating agent as therapeutic target for disorders of defective p53 function e.g. cancer, by assaying purified solute carrier family 2 (SLC2A) polypeptide or nucleic acid with a test agent.

Disclosure; Page 45; 58pp; English.

The present sequence is that of a human solute carrier type 2A (SLC2A) nucleic acid. Genetic screens were designed to identify modifiers of the p33 pathway in brosophila in which p33 was overexpressed. Human orthologues (polynucleotides and polypeptides) of one such modifier were crimosporter proteins with sugar transporter domains. SLC2A are glucose then identified, including the present nucleic acid. SLC2As are glucose then identified, including the present nucleic acid. SLC2As are glucose transporter proteins with sugar transporter domains. SLC2A nucleic acids and polypeptides are attractive drug targets for the treatment of pathologies associated with a defective p53 signalling pathway, such as scancer. The invention provides in vitro and in vivo methods of assessing SLC2A function. Modulation of an SLC2A or its binding pathway, such as scancer. The invention provides in vitro and its wembers in for understanding the association of the p53 pathway and its members in therapeutic modalities of p33-related pathologies. SLC2A-modulating agents that act by inhibiting or enhancing SLC2A expression, directly or indirectly. e.g. by affecting an SLC2A function such as transport or binding activity. Can be identified using methods provided. Modulators include small molecules, nucleic acids, antibodies, antisense include small molecules, nucleic acids, antibodies, antisense

Sequence 1445 BP; 182 A; 500 C; 456 G; 307 T; 0 U; 0 Other;

Alignment Scores:

1445	477	0	0	0	0
Length:	Matches:	Conservative:	Mismatches:	Indels:	Gaps:
1.02e-204	2457.00	100.00%	100.00%	100.00%	7
Pred. No.:	Score:	Percent Similarity:	Best Local Similarity:	Query Match:	DB:

US-09-886-954A-1 (1-477) x ABZ24794 (1-1445)

EAla 20 1000 66		 CTTC 126	0Pro 60	CCG 186	/Ala 80	recc 246	cLeu 100	CTC 306	Val 120	111 CGTG 366	Val 140	1111 AGTG 426	ccys 160
MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla	ProhrdGlyhrgArgValPheLeuAlaAlaPheAlaAlaAlaAlaAlaLeuGlyProLeuSerPhe	CCCCcccccccccccccccccccccccccccccccccc	GlypheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro	Gertreegertacherteccegecertecertagertagereegeegeegeegeegeegeegeegeegeegeegeege	AlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValVhrLeuGlyAla	GCCCCGGGCCTGGACGACGACGACGCCGCCTCCTGGTTCGGGGCTGTCGTCACCCTGGCTGCC	AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLySLeuSerLeu	GCGGCGGGGGGGGGGCTGGCTGGCTGGTGGTGGTGCGCGCGGGGGG	LeuLeuCysSerValProPheValAlaGlyPheAlaVallleThrAlaAlaGlnAspVal	THEFT THE THE THE THE THE THE THE THE THE TH	TrpMetLeuLeuGlyGlyGlyArgLeuLeuThrGlyLeuAlaCySGlyValAlaSerLeuVal	TGGATGCTGCTGGGGGGGCCCCTCCTCACCGGCCTGGCCTGCGGTGTTGCCTCCCTAGTG	AlaprovalTyrIseSerGluIeAlaTyrProAlaValArgGlyLeuLeuGlySerCys
MetThrProG	ProArgGlyAı	cccccccccccccc	GlyPheAlar	GGCTTCGCGC	AlaProArgLe		AlaAlaGlyG	000000000000000000000000000000000000000	LeuLeuCysSe	TTGCTGTGCT(TrpMetLeuL	TGGATGCTGC	
		67	41	127	61	187	81	247	101	307	121	367	141
8	ò	qu	δ	qq	Q	qq	δ	qq	σy	qq	ò	qq	QY

Tue Sep 28 09:09:40 2004

.

.

Homo sepiems. Exy Location/Qualifiers (SY Location/Outlifiers (Paragram) (Human; solute carrier cytostatic; gene there	type 2A; Apy; gene;	SLC2A; glucose t ss.	transporter; p53; cancer;
<pre>Location/Qualifiers 4137 4137 7.tag= 14137 7.tag= 17137 7.tag= 105-01507559 105-0136056 105-0136056 105-0136056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-01386056 105-014 11420-204 2457300 2457300 24573000000000000000000000000000</pre>				
<pre>2WO-US017419. 1UG-0296076P 1UG-0296076P 1UG-0296076P 1UG-0328605P. 2US-0357253P, INC. wman GD, Belvin M, Francis-Lang H, Li /19. /19. /19. /19. /19. /19. /19. /19.</pre>		cation/Qualif: .1437 tag= a roduct= "Human	iers n SCL2A"	
<pre>ZWO-US017419. IUS-0296076F. IUS-0357253P. ZUS-0357253P. IUS-0357253P. IUC-0357253P. IUC- ZUS-0357253P. INC. wman GD, Belvin M, Francis-Lang H, Li /19. /19. /19. /2003. Genetic screens were designed to perfective p53 function e.g. cancer, by defective p53 function e.g. cancer, by amily 2 (SLCZA) polypeptide or nucleic a defective b53 function solute carrier type 642003. Genetic screens were designed to p53 perthway including nucleic a defective fung p53 perthway including nucleic a defective fung for an orthologues (polynuclea in which p53 defection for understanding the associated with a defective for and orthologies associated with a defective for for an orthologies associated with a defective for for an orthologies associated with a defective for and orthologies associated with a defective for for an orthologies associated with a defective for for an orthologies associated with a defective for for an orthologies associated with a defective for an orthologies associated with a defective for for an orthologies associated with a defective for an orthologies associated with a defective for for an orthologies associated with a defective for an orthologies associated with a defective for an orthologies associated with a defective for an orthologies associated with a defective for a directly or indirectly er and polymologies are bologies associated with a defective for a directly or indirectly er and polymologies are bologies associated with a defective for a directly or indirectly er and polymologies are bologies associated with a defective for a directly or indirectly er and polymologies are bologies associated with a defective for a directly or indirectly er and polymologies are bologonucleotides and phosphothioat and a defective for an er and polymologies are and polymologies are and polymologies are are are are are are are are are are</pre>	WO200298467-A1.			
<pre>ZWO-US017419. IUGS-0296076F. IUGS-0296076F. IUGS-0328605F. ZUS-0328605F. ZUS-0328605F. ZUS-0328605F. ZUS-0328605F. ZUS-0328605F. ZUS-0328605F. ZUS-0328605F. ZUS-0328605F. ZUS-0328605F. INC. wman GD, Belvin M, Francis-Lang H, Li /19. /19. /19. /19. /20. /21. /21. /21. /21. /21. /21. /21. /21</pre>	12-DEC-2002.			
<pre>IUS-0296076P. IUS-0328605P. 2US-0327253P. INC. wman GD, Belvin M, Francis-Lang H, Li /19. /19. /19. /19. /2000 /2000 /2000 /2000 /2001 /2001 /2003 /2003 /2003 /2003 /2004 /2003 /2004 /2003 /2004 /2003 /2004 /2003 /2004 /2003 /2004 /2004 /2003 /2004 /200</pre>		0-US017419.		
<pre>INC. wman GD, Belvin M, Francis-Lang H, Li /19. /19. /19. /19. /19. /19. /19. /19.</pre>	-JUN-2001; -OCT-2001; -FEB-2002;	S-0296076P. S-0328605P. S-0357253P.		
<pre>wman GD, Belvin M, Francis-Lang H, Li /19. /19. /19. /19. /19. /19. /19. /19.</pre>	EXELIXIS	NC.		
 /19. /19. /19. /14. /14.<td>г,</td><td>GD,</td><td></td><td>H, Li D, Funke RP</td>	г,	GD,		H, Li D, Funke RP
<pre>idate p53 pathway modulating agent as th defective p53 function e.g. cancer, by amily 2 (SLC2A) polypeptide or nucleic a 42-43; 58pp; English. 42-43; 58pp; English. ence is that of human solute carrier typ 642003. Genetic screens were designed to p53 pathway in Drosophila in which p53 uman orthologues (polynucletides and p0 r were then identified, including nuclei se transporter protents with sugar transi ids and polypeptides are attractive drug bhologies associated with a defective p53 cancer. The indirection of an SL is useful for understanding the associa members in normal and disease conditions ostic and horapeutic modalities of p53- is useful for understanding the associa members in normal and shease conditions ostic and horapeutic modalities of p53- is useful for understanding the associa is useful for understanding the associa encloaned is and phosphothioat of directly or indirectly, e.g. by affect transport or binding acturby, can be i Modulators includes and phosphothioat ed) i 262 A; 624 C; 573 G; 397 T, 0 U, 0 Oth i 100.004 i 100.004</pre>		. 6		
 42-43; S8pp; English. 42-43; S8pp; English. 64003: Genetic screens were designed to identify p53 pathway in Drosophila in which p53 was man orthologues (polynuclectides and polypetides) or were the including nucleic acid 136420 set transporter proteins with sugar transporter domain identify polyters in a defective p53 signalling concer. The invention provides in vitro and in vivo sing SLC2A he including the association of the post uners in normal and disease conditions and for voivo sing SLC2A nor the product of p53 signalling concer. The invention provides in vitro and in vivo sing SLC2A function. Modulation of the post conditions and for ostic and therapeutic modalities of p53 related usi. Adrectly or indirectly, e.g. by affecting an SLC2A funcetly or indirectly, e.g. by affecting an SLC2A function. Modulations and for ostic and therapeutic modalities of p53 related usi. Adventing agents that act by inhibiting on SLC2A funcetly or indirectly, e.g. by affecting an SLC2A funcetly or indirectly, e.g. by affecting an SLC2A funcetly or indirectly. Advention should be identified usi. 2262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 262 A; 624 C; 573	Identifying candid, for disorders of d solute carrier fam agent.	ate p53 pathwa efective p53 1 ily 2 (SLC2A)	ay modulating ag function e.g. ca polypeptide or	as th r, by leic a
<pre>ence is that of human solute carrier type 2A (SLC2A) 642003. Genetic screens were designed to identify uman orthologues (roothila in which ps3 was than orthologues (roothila in which ps3 was transporter proteins with sugar transporter domain dis and polypeptides are attractive dug targets for hologies associated with a defective p53 signalling cancer. The invention provides in viro and in viro sis useful for understanding the association of the p of sis useful for understanding the associated usi is useful for understanding the association of the p members in normal and disease conditions and for of arrectly or indirectly, can be identified usi directly or indirectly, can be identified usi . Modulation of and phosphothioate morpholino ed) . 2457.00 additers include small molecules, nucleic acids, sense oligonucleotides and phosphothioate morpholino ed) . 1.42e-204 thenetic:</pre>			ıglish.	
; 262 A; 624 C; 573 G; 397 T; 0 U; 0 Other; 1.42e-204 Length: 1856 2457.00 Matches: 477 100.00% Matches: 0 100.00% Mismatches: 0 100.00% Mismatches: 0 77) x AB224792 (1-1856) 77) x AB224792 (1-1856) 77) x AB224792 (1-1856)		ce is that of 2003. Genetic 33 pathway in an orthologues were then ider transporter js and portyer transporter js and portyer transporter anger in port is useful for therat modulating ag irrectly or ir transport or bi doulators in ose oligonucle	human solute ca screens were de prosophucle tid (prosophucle tid (prosophucle tid (proson provides rention provides feation provides feation provides feation provides for modalitie pout and disease of pout and pout and pout pout of and pout pout and pout and pout pout and pout and pout pout and pout and pout and pout pout and pout and pout and pout and pout and pout pout and pout and	fy fy fy fes) o fes) o fes fer fre fre fre fre fre fre fre fre fre
Scores: 1.42e-204 Length: 1856 2477 2477 100.00% Conservative: 0 Similarity: 100.00% Mismatches: 0 100.00% Mismatches: 0 100.00% Gaps: 0 54A-1 (1-477) × ABZ24792 (1-1856) 1 MetThrProGludspProGludutThrGlnProLeuLeuGlyProproGlyGiySerAla	1856 BP;	52 A; 624	G; 397 T;	0
(1-477) × ABZ24792 (1-1856) LThrProGluAspProGluGluThrGlnProLeuteuGlyProProGlyGlySerAla		1.42€~204 2457.00 100.00% 100.00% 100.00%	ch: nes: ervative atches: ls:	1855 77 000000000000000000000000000000000
MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla	1	x ABZ24792	(1-1856)	
		31uAspProGluG1	uThrGlnProLeule	

Qy 361 AlaGinProValAspAlaSerValGiyLeuAlaTrpLeuAlaValGiySerMetCysLeu 380 Db 1084 6CACAGCCTGATGCAGGCTGGGGGCTGGCCTGGCCAGGCATGTGCCTC 1143

4
o
0
200
0
4
δ
0
••
σ
ο
ω
N
Q.
ep
ñ
Tue
đ
Ĥ
-

Db 1144 Treatesceedertracestragescradegecceateccergestreedeare 1203	Qy 401 PheProLeuHisValLysGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeuMet 420 Db 1204 TrcccTcTGCaTGCGTGGGGGGGGGGGGGGGGGGGGGGGGGG	Qy 421 AlaPheLeuValThrLysGluDheSerSerLeuMetGluValLeuArgProTyrGlyhla 440 Db 1264 6000000000000000000000000000000000000	441 PheTrpLeuAlaSerAlaPheCys1lePheSerValLeuPheThrLeuPheCysValPro 460	Db 1324 Trereserreserreserresereresereresereresererererereserer	Qy 461 GluThrLysGlyLysThrLeuGluGlnIleThrAlaHisPheGluGlyArg 477	Db 1384 GAPACTAAAGGAAGGAAGAACTCTGGGAACAAATCACGGGCCGATTTTGAGGGGGCGGA 1434	RESULT 3 AAD09552 ID AAD09552 standard; CDNA; 2080 BP.	AC AAD09552; AC AAD09552;			Human; transporter and ion channel-1; TRICH-1; vaccine; cystic							AA OS Homo sapiens.	Key	CDS	AA PN WO200146258-A2.	28-JUN-2001.	AX PF 22-DEC-2000; 2000WO-US035095. 	23-DEC-1999; 99US 14-JAN-2000; 2000US	21-JAN-2000; 2000US 28-JAN-2000; 2000US	PR 02-FEB-2000; 2000US-0179758P. PR 10-FEB-2000; 2000US-0181625P.		AA Baughn MR, Burford N, Au-Young J, Lu DAM, Yang J, Reddy R; PI Lal P, Hillman JL, Azimzai Y, Yue H, Nguyen DB, Yao MG, Gandhi AR; PI Tang YT, Khan FA;	AX DR WPI, 2001-418042/44. DR P-PSDB; AAE04888.	AA PT Novel human transporter and ion channel proteins useful for treating and
---	--	---	--	---	--	--	--	------------------------------	--	--	--	--	--	--	--	--	--	------------------------	-----	-----	--------------------------	--------------	--	--	--	--	--	---	---	---

preventing transport, neurological, muscle and immunological disorders Claim 5; Page 140-141; 160pp; English.

The present sequence is transporter and ion channel-1 (TRICH-1) cDNA. TRICH is used as vaccine. TRICH is useful for treating a disease or ration associated with decreased suppression of functional TRICH, such as transport disorder including amotrophic lateral sclerosis, cystic fibrosis, Becker's muscular dystrophy, charcot-Marie Tooth disease, buchenne muscular dystrophy, angina and hypertension, neurological disorders including Alzheimer's disease, annesia, bipolar disorder, dementia, depression, epilepsy, ischaemic cerebrovascular disease, stroke, cerebral neoplasms, Pick's disease, munington's disease, arktinson's disease, demyelinating disease, munington's disease and praktinson's disease, demyelinating disease, munington's disease and arktinson's disease, demyelinating disease, munington's disease and prod, anxiety, Schizophremia and asthma and immunological disorders mood, anxiety, schizophremia and asthma and immunological disorders including AIDS, aulti respiratory distress syndrome (ARDS), allergies, dematomyositis, arrhythmias and asthma and other diseases including to syndrome, systemic lupus erythematosus and other diseases including consistic disease, cataractis infertility, pulmonary sickle cell anaemia, wilson's disease, cataractis, infertility, pulmonary sickle cell anaemia, wilson's disease, cataractis, infertility, pulmonary sickle cell anaemia, wilson's disease, disease, indicuding conservatistis and virtal, bactereal, hypercholesterolaemia, cancers plucose galactose malabsorption syndrome, hypercholesterolaemia, cancers plucose galactose malabsorption syndrome, hypercholesterolaemia, cancers plucose galactose malabsorption syndrome, hypercholesterolaemia, cancers contractions. TRICH DNA is useful in gene therapy and in diagnostic 105 165 120 405 140 465 160 525 180 225 100 345 285 40 60 20 80 46 ATGAGGCCCGGAGGAAACCCAGCCGGCGCGCTTCTGGGGGCCTCCTGGCGGCGCGCG

 AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeu

 346 Trecrereccereccereccereccedeccerecterereccerecereceeceeceere 141 AlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 466 GCCCGGGTCTACATCTCCGGAAATCGCCTACCAGCAGGAGGGTTGCTCGGCTCCTGT 161 ValGInLeuMetValValValValGIyIleLeuLeuAlaTyrLeuAlaGIyTrpValLeuGlu 41 GlyPheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro 226 GCCCGCGCCTGGACGCCGCCGCCCCCCCGGGGCTGTCCGGGGCTGTCCTGGGTGCC 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 21 ProArgGlyArgArgValPheLeuAlaAlaAlaAlaAlaAlaLeuGlyProLeuSerPhe 61 AlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValThrLeuGlyAla 121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal LeuLeuCysSerValProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspVal Sequence 2080 BP; 300 A; 688 C; 632 G; 460 T; 0 U; 0 Other; 2080 477 0 0 0 Length: Matches: Conservative: Mismatches: Indels: Gaps: US-09-886-954A-1 (1-477) x AAD09552 (1-2080) 1.65e-204 2457.00 100.00% 100.00% 100.00% Best Local Similarity: Percent Similarity: Alignment Scores: 81 101 purposes Query Match: Pred. No.: Score: å പ്പ ЧС δ qq q g qq q δ $\hat{\sigma}$ δ \mathcal{S} δ 20 8 8

4
ò
ñ
0
4
••
σ
0
σ
0
28
Sep
Tue

The present sequence is that of human solute carrier type 2A (SLC2A) uncleic acids 7657680. Genetic screens were designed to identify modifiers of the p53 pathway in Drosophila in which p53 was correspressed. Human orthologues (polynucleotides and polypeptides) of overexpressed. Human orthologues (polynucleotides and polypeptides) of core such modifier were then identified, including nucleic acid 7657680. SLC2A are glucose transporter proteins with sugar transporter domains. SLC2A mucleic acids and polypeptides are attractive drug targets for the treatment of pathologies alsociated with a defective p53 signalling treatment of assessing SLC2A function. Modulation of an SLC2A or its pathway and its members in normal and disease conditions and for the pathologies. SLC2A-modulating the association of the p53 detuologies. SLC2A-modulating agents that act by inhibiting or enhancing throologies. SLC2A-modulating activity, can be identified using methods partners ion binding activity, can be identified using methods provided. Modulations in Alfecting an SLC2A function such as transport or binding activity, can be identified using methods provided. Modulations in holecules, nucleic acids, antionoles. SLC2A-modulations and prosphothioate function such as transport or binding activity, can be identified using methods provided. Modulations indices and phosphothioate worpholino Identifying candidate p53 pathway modulating agent as therapeutic target for disorders of defective p53 function e.g. cancer, by assaying purified solute carrier family 2 (SLC2A) polypeptide or nucleic acid with a test ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 40 20 4 ATGACGCCCGAGGCCCCAGGGAAACCCCAGCCGCCTCTGGGGGCCCAGCGCCG 63 Belvin M, Francis-Lang H, Li D, Funke RP; 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla Sequence 1873 BP; 279 A; 621 C; 573 G; 400 T; 0 U; 0 Other; 1873 475 000 Length: Matches: Conservative: Mismatches: Indels: Gaps: /*tag= a /product= "Human SCL2A" US-09-886-954A-1 (1-477) x ABZ24793 (1-1873) Disclosure; Page 43-44; 58pp; English. cytostatic; gene therapy; gene; ss. Location/Qualifiers 05-JUN-2001; 2001US-0296076P. 10-OCT-2001; 2001US-0328605P. 15-FEB-2002; 2002US-0357253P. 8.77e-204 2448.00 99.79% 99.58% 99.63% 03-JUN-2002; 2002WO-US017419. Friedman L, Plowman GD, 4. 1437 /*tag= a (EXEL-) EXELIXIS INC. WPI; 2003-201283/19. P-PSDB; ABP58364. oligomers (claimed) Percent Similarity: Best Local Similarity: WO200298467-A1 Homo sapiens Alignment Scores: 12-DEC-2002. 21 64 Query Match: agent. Pred. No.: Key Score: DB: ą δ δ đ

2004
9:40
50:60
7 8
Sep
Tue

41 G1 G1 <td< th=""><th>Db1204TrcccrcracarGrCarGaGGGGGGGGGGGGGGGGGGGGGG</th><th><pre>2001 (first entry) UTX1 coding sequence. 3UTX; gene therapy; vac ransport disorder; isch aemia; glucose metaboli alens. 1145-A2. 1145-A2. 2000; 2000W0-IB001042. 2000; 2000W0-0151140P. 2000; 2000W5-0143907P. 1999; 99US-0151140P. 2000; 2000US-016132. UNIV LAUSANNE. UNIV LAUSANNE.</pre></th><th><pre>FI Thorens B, Ibberson M, Uldry M; WPL; 2001-112615/12. BR WPL; 2001-112615/12. XX WrL: 2001-112615/12. XX Wrcleic acids encoding GLUTX glucose transport disorders, useful in the Prevention, diagnosis and treatment of hexose transport disorders, e.g. FT Nucleic acids encoding GLUTX glucose transport disorders, e.g. FT Nucleic acids encoding GLUTX glucose transport disorders, e.g. FT The prevention, diagnosis and treatment of hexose transport disorders, e.g. FT The present invention relates to GLUTX proteins (AAF55865-AAF55871 and CC The present invention relates to GLUTX proteins are related to the facultative CC Anab66932-AAF55871 and CC The present invention relates to GLUTX proteins are related to the facultative CC function. The GLUTX proteins are related to the facultative CC function. The GLUTX proteins may be used in the diagnosis, prevention and CC tructor. The GLUTX proteins may be used in the diagnosis, prevention and CC tructor. The GLUTX proteins may be used in the diagnosis, prevention CC tructor. The GLUTX proteins may be used in the diagnosis, prevention CC tructor. The GLUTY and have hexose metabolism diabetes, CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY prote</pre></th></td<>	Db1204TrcccrcracarGrCarGaGGGGGGGGGGGGGGGGGGGGGG	<pre>2001 (first entry) UTX1 coding sequence. 3UTX; gene therapy; vac ransport disorder; isch aemia; glucose metaboli alens. 1145-A2. 1145-A2. 2000; 2000W0-IB001042. 2000; 2000W0-0151140P. 2000; 2000W5-0143907P. 1999; 99US-0151140P. 2000; 2000US-016132. UNIV LAUSANNE. UNIV LAUSANNE.</pre>	<pre>FI Thorens B, Ibberson M, Uldry M; WPL; 2001-112615/12. BR WPL; 2001-112615/12. XX WrL: 2001-112615/12. XX Wrcleic acids encoding GLUTX glucose transport disorders, useful in the Prevention, diagnosis and treatment of hexose transport disorders, e.g. FT Nucleic acids encoding GLUTX glucose transport disorders, e.g. FT Nucleic acids encoding GLUTX glucose transport disorders, e.g. FT The prevention, diagnosis and treatment of hexose transport disorders, e.g. FT The present invention relates to GLUTX proteins (AAF55865-AAF55871 and CC The present invention relates to GLUTX proteins are related to the facultative CC Anab66932-AAF55871 and CC The present invention relates to GLUTX proteins are related to the facultative CC function. The GLUTX proteins are related to the facultative CC function. The GLUTX proteins may be used in the diagnosis, prevention and CC tructor. The GLUTX proteins may be used in the diagnosis, prevention and CC tructor. The GLUTX proteins may be used in the diagnosis, prevention CC tructor. The GLUTX proteins may be used in the diagnosis, prevention CC tructor. The GLUTY and have hexose metabolism diabetes, CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, prevention CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY proteins may be used in the diagnosis, CC tructor. The GLUTY prote</pre>
	<pre>1 G1ypheAlaLeuG1yTyrSerSerProAlaT1eProSerLeuG1hArgAlaAlaProPro 11 G1ypheAlaLeuG1yTyrSerSerProAlaT1eProSerLeuG1hArgAlaAlaProPro 11 GGCrYtGGCGCGGGGCAGGCTCCCGGGCCCTGCGGGCGCGGCGCCCCGG 61 AlaProArgLeuAspAspAlaAlaAlaAlaSerTrppheG1yAlaV1YhTheuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaSerTrppheG1yAlaV1YhTheuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaSerTrppheG1yAlaV1YhTheuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaSerTrppheG1yAlaValYhThLeuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaSerTrppheG1yAlaValYhThLeuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaAlaSerTrppheG1yAlaValYhThLeuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaAlaSerTrppheG1yAlaValYhThLeuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaAlaSerTrppheG1yAlaValYhThLeuG1yAla 61 AlaProArgLeuAspAspAlaAlaAlaAlaAlaAlaAlaValThTLeuG1yAla 61 AlaProArgLeuAspAspArgAlaAlaAlaAlaValThThLeuG1yAla 61 AlaAlaG1yG1yAlLeuG1yG1yTrpLeuValAspArgAlaG1yArgLysLeuSerTreu 6</pre>	 14.1 ALENDALTYTILSESTGJUTIENATTYFFDALAVALAVAGGGGGTTGGGNUTIF 15.1 ALENDALTYCATTCATCATCATCATCATCATCATCATCATCATCATCAT	<pre>261 ValSerLeumetAlaPheGInGInieuSerGlyValAsnAlaYmetPheTyrAlaGIu 111111111111111111111111111111111111</pre>

.

us-09-886-954a-1.rng

Db1368AAGCTGACCCAGGGTGGCCCTGCCAGCTGCCATCTCGGGGCCTGTCTCT1427QY361AlaGInProValAspAlaSerValGIyLeuAlaTrpLeuAlaValGIySerMetCysLeu380Db1428GCACAGGCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	QY 421 AlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAla 440 Db 1[11111111111111111111111111111111111	RESULT 6 AAF55866 ID AAF55866 standard; CDNA; 2087 BP. XX AC AAF55866; XX DT 17-APR-2001 (first entry) XT DF 17-APR-2001 (first entry) XT MR Rat GLUTX1 coding sequence. XM Rat GLUTX1 coding sequence. XM Rat GLUTX2, gene therapy; vaccine; hexose transport modulator; XM hexose transport disorder; ischaemia; diabetes; hyperglycaemia; ss; XM hypoglycaemia; glucose metabolism disorder; neurodegenerative disease. XM MATLUS Sp.	<pre>PN WO200104145-A2. XX 18-JAN-2001. XX 14-JUL-2000; 2000W0-IB001042. XX 14-JUL-1999; 99US-0143907P. PR 14-JUL-1999; 99US-0151140P. PR 27-AUG-1999; 99US-0151140P. PR 23-FEB-2000; 2000US-00616132. PR 13-JUL-2000; 2000US-00616132. XX (UYLA-) UNIV LAUSANNE. XX (UYLA-) UNIV LAUSANNE. XX Thorens B, Ibberson M, Uldry M; XX WPI; 2001-112615/12. DR PFSDB; AAB66933.</pre>	^{XX} Nucleic acids encoding GLUTX glucose transporter proteins, useful in the PT prevention, diagnosis and treatment of hexose transport disorders, e.g. PT ischemia and diabetes. XX Claim 3; Page 71-73; 124pp; English. XX Claim 3; Page 71-73; 124pp; English. XX CThe present invention relates to GLUTX proteins (AAF55865-AAF55871 and AAB65932-AAB65941). The GLUTX proteins are related to the facultative glucose carriers GLUTT proteins are related to the facultative function. The GLUTT proteins are related to the diagnosis, prevention and CC function. The GLUTT proteins may be used in the diagnosis, glubetes, treatment of hexose transport disorders such as ischaemia, diabetes, hyperglycaemia, hypoglycaemia, a glucose metabolism disorder and/or a neurodegenerative disease. The present sequence is the coding sequence
US-09-B86-954A-1 (1-477) x AAF55865 (1-2217) QY 1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 20 Db 348 ATGACGCCCGAGGGAACCCCAGGGCGCTCTTGGGGGCCCTCCTGGGGGCGAGGGGC 407 OV 21 ProArgGlyArgArgValPheLeuAlaAlaAhaAhaAhaAhaAhaAhaAhaAhaAhaAhaAhaAhaAha	rgfeuAspAspAlaAlaAlaSerTrppheGlyAlaValValThrLeuGlyAla	<pre>121 TrpMetLeuleuglyGlyArgleuLeurhrGlyLeuAlacy 121 TrpMetLeuleuglyGlyArgleuLeurhrGlyLeuAlacy 131 AlaGATGCTGGGGGGGGGGCGCCTCTCACGGGCTIAI 708 GCCCGGGTGTACTGGGGGGGGGCTCTCTCACGGGCTGG 141 AlaFrovalTyrIleSerGluIleAlaTyrProAlavalAr 768 GCCCGGTCTACATCTCCGAAATCGCCTACCCAGCAGTCCG 161 ValGlnLeuMetValValGlyIleLeuLeuAlaTyrLe 161 [</pre>	<pre>201 PheMet ProGluthrProArgPheLeuLeuThrGlnHisArgArgGlnGlualaMetAla 111111111111111111111111111111111111</pre>	<pre>1188 ACCATCTTTGAAGGGCCAAGTTCAAGGACGGCGCGGGCTGGCGTGGGGGGGTC 1247 301 IleGInValLeubheThralaValAlaAlaLeuIlemetAspArgArgGacGGGGGGGGTGT 1247 301 IleGInValLeubheThralaValAlaAlaLeuIlemetAspArgArgGacGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>

Tue Sep 28 09:09:40 2004

us-09-886-954a-1.rng

Sequence 2087 BP; 355 A; 673 C; 580 G; 479 T; 0 U; 0 Other; CC for rat GLUTX1 XX SQ Sequence 2087 E

Length: 2087 Matches: 408 Conservative: 33 Mismatches: 1 Indels: 1 8.37e-179 2162.50 92.26% 85.36% 88.01% Alignment Scores: Pred. No.: Score: Percent Similarity: Best Local Similarity: Best Local Similarity: Query Match: Best Local Similarity: Best

		20	6	40	149	60	209	80	269	100	329	120	389	140	449	160	509	180	569	200	629	220	689	240	749	259	809	279	869	299	929
		ySerAla	CAGGGCT	uSerPhe 	CAGCTTC	aProPro	Accccct	uGlyAla	GGGCGCT	uSerLeu	GAGCCTC	nAspVal	GGATGTG	rLeuVal	ATTAGTG	ySerCys	CTCCTGT	llleuGlu	CCTAGAA	uMetCys	CATGTGC	AMetAla	CATGGCT	.yAlaGlu	GGCTGAG	ellelle	CATCATC	eTyrAla	CTATGCC	IValG1y	TGTGGGC
		oProGlyGl	GCCGGGGCGC	uGlyProLe	GGGCCCGCT	nArgAlaAl	GĊĠĊACCĠĊ	JValThrLe	CGTGACCCT	yArgLysLe	GCGCAAGCT	rAlaAlaGl		yvalAlaSe	AGTCGCCTC	yLeuLeuG1	ACTGCTCGG	aGlyTrpVa	AGGCTGGGT	tLeuLeuLe	GCTGCTGCT	IdelngluAl	CCAGGAGGG	CoProlleG	CCCTGTTGG	rLysProPh	CAAGCCCCT	avalMetPh	CATCATGT	-aSerValVa	crceercac
		1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGlySerAla 20	GTTGCGGTC	aAlaAlaLe	CGCCGCCCCT	coSerLeuGl	cAGCCTGCG	eGlyAlaVa	CGGGGGCCGT	pArgAlaG1	cc grġcago	aValileTh	TGTCATCAC	uAlaCysG1	90 TGGATGCTCGCAGCGCCCCCCCCCCCCCCCCCCCCCCCC	avalArgGl	CGTTCGAGG	aTyrLeuAl	CTACGTGGC	TrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCys	CACCCTCAT	:::	ACACCAGTA	AlaLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspProFroIleGlyAlaGlu	36GAAGAGCC	roGlyIleTy	CTGGTGTCCP	<pre>:60 GlyValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPheTyrAla 27; </pre>	BGGTCAACGC	erSerLeuAl	scadecerded
Indels: Gaps:	(087)	rGlnProLe	ACAGCCGCT	.aAlaPheAl	CACCTTCGC	oAlaIlePr	ceccarco	aSerTrpPh	crccrggr1	preuvalAs	séricereez	aGlyPheAl	CGGTTTGC	auThrGlyLe	CACCGGCCT	aTyrProA]	CTACCCAGO	eLeuLeuA]	CCTCTTGGG	sValProP1	TGTGCCCCC	euLeuThrG]	rccreace	luGlnGlyT	AGGAGGGCTC	euArgGlnP1	readdococo	InteuserG	AGCTGTCAGG	neLysAspSe	rcaaggacad
ΗŪ	5866 (1-2(oGluGluTh	CCAGGAAAC	1 PheLeuAl	CTTCCTTGC	rSerSerPr	CAGCTCCCC	pAlaAlaAl	CACTGCGGC	uGlyGlyTr	GGGCGGCTC	oPheValAl	CTTCGTGAC	yArgLeuLe		rGluIleA]	GGAAATCGC	lvalglyI]	CACTGGCA	llfeuGlyCy	GCTGGGCTC	oArgPheLe	ACGCTTCC	pglyserg]	GGGCTCTG	uAlaLeuLe	GGCTATGC	aPheGlnG	CTTCCAGC	UALALYSP	AGGCCAAGT
88.01% 4	7) × AAF5	GluAspPr 	CGAGGACCC	ArgArgVa	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	aLeuGlyTy	SCTIGGCIA	JLeuAspAs	CTCGGAGA	GlyValLe	seccrect	SerValPr	CACCGTGCC	TheuGlyGl	GCTCGGAGG	TyrIlese	CTATATCTC	MetValVa	GATGGTTGT	pLeuAlaVa	BTTGGCTGT	oGluThrPr	ceagacccc	gPheLeuTr	CTTCCTGTG	rPheHisLe	CTTCCAGCT	rLeuMetAl	ccrcarge	ePheGluG1	CTTTGAGG
	-1 (1-477	MetThrPro	ATGTCGCCC	ProArgGl	000000000000000000000000000000000000000	GlyPheAl	GGCTTCGC	AlaProArg	GCCCTACG	AlaAlaGly	GCGGCAGG	LeuLeuCy	CTGCTCTG	TrpMetLe	TGGATGCT	AlaProVa	GCACCGGT	ValGlnLe	GTGCAGCT	TrpArgTr	TGGCGCTG	PheMet Pr	TACATGCC	AlaLeuAr	GCCCTGCG	GlnSe	CACCAGGG	GlyValSe	GGCATTTG	GluThrIl	AACACCAT
Match:	-886-954A	н Т	30	21	06	41	150	61	210	81	270	101	330	121	390	141	450	161	510	181	570	H	630	221	690	241	750	260	810	280	870
Query DB:	- 60 - SN	ζ,	qQ	QY	qq	δY	qq	Qγ	дq	δ	дQ	δλ	qq	δ	qq	δγ	qq	QY	qu	οy	qq	δy	qu	QY	qa	QY	qa	Ś	qu	QY	dū ,

y Q	0	
a 1		
Vo da	320 LeuleuleuValLeuSerGiyValValValValPheSerThrSerAlaPheGiyAlaTyr 339 	
à i	340 PheLys	
q		
QV DP	<pre>360 SerAlaGInProvalAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCys 379</pre>	
QY	380 LeupheileAlaGlypheAlaValGlyTrpGlyproIleProTrpLeuLeuMetSerGlu 399	
qq	1170 CTCTTCATCGCTGGCTTGGCTGGGGGGGGGGGGCCCCGGGCTGGCT	
VQ 4	400 IlePheProLeuHisValLySGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeu 419 :::	
an		
V P Q	420 MetAlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGly 439 ::	
QY	440 AlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysVal 459	
qu	TILLI GTATCCTCAGCGTCCTTTTCACGCTCACCTT	
δλ	460 ProGluThrLysGlyLysFlnrLeuGluGlnIleThrAlaHisPheGluGlyArg 477 111111111111111111111111111111111111	
qQ	CTGAGACTAAAGGCAGGACTCTGGAACAAATCACAGCCCCATTT	
RESU AAF5 ID XX AC	ULT 7 55867 AAF55867 standard; cDNA; 2072 BP. AAF55867;	
X	17-APR-2001 (first entry)	
XX	urine GLUTX1 coding	
XXXX	Murine; GLUTX; gene therapy; vaccine; hexose transport modulator; hexose transport disorder; ischaemia; diabetes; hyperglycaemia; ss; hypoglycaemia; glucose metabolism disorder; neurodegenerative disease.	
XS	Mus sp.	
N N	WO200104145-A2.	
C A	18-JAN-2001.	
XX PF	14-JUL-2000; 2000WO-IB001042.	
XX R R R R R R R R R R R R R R R R R R R	14-UUL-1999; 99US-0143907P. 27-AUG-1999; 99US-0151140P. 23-FEB-2000; 2000US-0184285P. 13-UUL-2000; 2000US-00616132.	
A A Y	(UYLA-) UNIV LAUSAINE.	
성값	Thorens B, Ibberson M, Uldry M;	
8 H H S	WPI; 2001-112615/12. P-PSDB; AAB66934.	
2 단 단	Nucleic acids encoding GLUTX glucose transporter proteins, useful in the prevention, diagnosis and treatment of hexose transport disorders, e.g.	

Tue Sep 28 09:09:40 2004

.

Claim 3; Page 73-74; 124pp; English. The present invention relates to GLUTX proteins (AAF55865-AAF55871 and AAB66922-AAB66941). The GLUTX proteins are related to the facultative glucose carriers GLUT1-GLUTS and have hexose binding and/or transport function. The GLUTX proteins may be used in the diagnosis, prevention and hyperglycaemia, hypoglycaemia, a glucose metabolism disorder and/or a neurodegenerative disease. The present sequence is the coding sequence for murine GLUTX1	Sequence 2072 BP; 351 A; 673 C; 584 G; 464 T; 0 U; 0 Other;	Alignment Scores:1.02e-177Length:2072Pred. No.:2150.00Matches:409Score:2150.00Matches:433Percent Similarity:92.47%Conservative:33Best Local Similarity:85.56%Tidels:2DB:91.51%Tidels:22DB:4Gaps:22	9-886-954A-1 (1-477) x AAF55867 (1-2072)	pleule	21 ATGTCTCCCGAGGACCCCCAGGAGGAGGCGCCGCCGCCCACGCCCCGGGAGCCCAGGACT 80	21 ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 40	10000	oPr oPr	CCCCAGCCTGCGGCGCGCGCCCGCACC	0	ני היינייניינייניינייניינייניינייניינייניינ	261 GCTGCAGGGGGGGCATACTGGGGGGGGGGGCGCAAGCTGGGGGGGG	0	21 TTGCTCTGCGCGTGCCCTTCGTGACTGGCTTTGCTGTCATCACCGCGCCC	121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal 140 	141 AlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160	CGGCTC	161 ValGlnLeuMetValValGlyIleLeuLeuLeuAlaClyTrpValLeuGlu 180	CTGGGTCCTAGA	181 TrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCys 200 	10 Dhemet Droff imprevention of anti-array of the second o	<pre>621 TACATGCCCGAGACCCCCACGTTTTCTCCTCAACACACAGAGAGGCCATGGCCT 680</pre>	Ń	681 GCCTTGCGCTTCCTGGGGGCTCTGAGGAGGGCTGGGAAGAGCCCCCTGTTGGGGGCTGAG 740
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	SO	Alignm Pred. Score: Percen Best L Query DB:	0-SU	δy	qq	5	qq	δλ	qq	VQ dq	8	DP Q	Š	qq	o d	δ	qq	δγ	qu	va da	Š	2 A	Š	g

δλ	LeuArgGlnFroGlyIleTyrLysProPheIle1le 25
цb	
δ	eTyrAl
qq	CATTICCTCATGGTCTTCCAGCAGCTGTCAGGGGGCCAATGCTATGTTCTATGCC 86
Q	29
цц	-8
QY	300 ValileGinValLeuFheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArg 319
qq	AGGTCCTGTT
Q	n –
qq	981 CTGCTCTGGCCTTGTCGGGTGGGGTGGTCATGGTGCTCAGGTGCCTTTGGTACCTAC 1040
δλ	340 PheLysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlalleSerAlaProVal 359
qq	CCAGCAACTCCTCCCACGTAGGCCTGGT
δy	erAlaGlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMet
qa	1098 GCGCGCGCGCGCGCGCTGTGCCAGTGGCCTGGCCTGGCTGG
δλ	euPheIleAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetS
qQ	1158 CTCTTCATTGCTGGCTGGGGGGGGGGGGGGGGGCCCATCCCCTGGCGCTCAGAG 1217
Q	ePheProteuHisValLysGlyValAlaThrGlyIleCysVa
qq	1218 ATCTTCCCTCTGCATGTCTAAGGGTGTGGGCTACCGGGCATCTGTGTCTCTCCCCCCCACTGCATGTCC 1277
Qγ	ApheleuvalThrLysGluPheSerSerLeuMetGluValLeuArgP
đđ	1278 ATGGCCTTTCTAGTGACCAAAGAGTTCAACAGGGGTCATGGAGAGAGGCCTACGGT 1337
δλ	aPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysVa
qa	seef[getgectttctgegetetetgetgetgetetgetegeteg
8	ThriysglyLysThrieuglugln1leThrAlaHisPheg]
qq	1398 CCTGAGACTAAAGGCAGGACTCTGGAACAAGTCACAGGCCCATTTCGAGGGACGA 1451
RESULT ABX340 ID 2	ILT 8 14029 ABX34029 standard; cDNA; 1954 BP.
XX AC	ABX34029;
XE	10-FEB-2003 (first entry)
XX DE	Human cancer suppressing protein PP7425.
X 2	Human; gene; ss; cancer suppressing protein; cancer.
X S	Homo sapiens.
XA	CN1351081-A.
283	29-MAY-2002.
PF X	31-OCT-2000; 2000CN-00127102.
¥ 8 3	31-OCT-2000; 2000CN-00127102.
A A Y	(SHAN-) SHANGHAI INST ONCOLOGY.
Iđ	Gu J;

protein with cancer suppressing function. The invention also comprises a method for preparing the polypeptide by recombination, and an application of the polypeptide in treating diseases such as cancer, etc. Also disclosed in an antagonist of the polypeptide and its medical action. The present sequence represents a CDNA encoding a cancer suppressing protein of the invention 160 480 180 540 200 220 100 120 360 140 420 600 660 This invention relates to the cDNA and protein sequences of a novel human 120 180 240 300 60 80 20 60 40 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal uTrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuMetCy AlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValValThrLeuGlyAla AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeu rrecrerectedecerrectreecerectrreccercarcacececeaecere 361 1664 recrecededededecedererereredeceredederredererederere ProArgGlyArgArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSerPhe 41 GlyPheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro GecttCGCGCTCGGCTtCCCCGGCCATCCCTAGCCTGCGCCGCGCGCGCGCCCCCG 181 GCCCGCGCCTGGACGCCGCCGCCCCCTGCTTCGGGGCTGTCGTGACCCTGGGTGCC sValGInLeuMetValValValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGl LeuLeuCysSerValProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspVal đ New human protein with cancer cell growth suppressing function and polynucleotide encoding it, for treating diseases, such as, cancer. Sequence 1954 BP; 325 A; 633 C; 573 G; 423 T; 0 U; 0 Other 1954 426 н н <mark>и</mark> н н Length: Matches: Conservative: Mismatches: Indels: 5; Page 23-24 (disclosure); 39pp; Chinese Gaps: US-09-886-954A-1 (1-477) x ABX34029 (1-1954) 1.94e-175 2123.50 89.14% 88.94% 86.43% G WPI; 2002-609437/66. P-PSDB; ABU11283. Percent Similarity: Best Local Similarity: Query Match: Alignment Scores: Pred. No.: 301 421 21 61 61 81 241 101 121 141 160 481 180 541 200 601 121 Claim Score DB: q \mathcal{S} ą 8 q \mathcal{F} δ đ S qq δ q à Db Σ_{λ} qu γQ đ $\delta \gamma$ đ δ g

QY Db	220 aAlaLeuArgPheLeuTrj 	LeuTrpGlySerGluGlnGlyTrpGluAspFroProIleGlyAlaGl 240
VO 45	240 uGlnSerPheHisLeuAla 	LeuAlaLeuLeuArgGlnProGlyIleTyrLysProPheIleIleGl 260
Q dq	0 YValSerLeuMet 1 CGTCTCCTGATG	AlaPheGInGInteuSerGlyValAsnAlaValMetPheTyrAlaG1 280
AY da	0 uThril 1 GACCAT	epheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValGlyVa 300
QV dQ	300 lileGlnvalLeuPheTh 	rgAlaGlyArgArg 3AGCAGGGCGGAGG
AQ Db	320 uteuteuvalleuserG1; 	uteuteuvalteuserGlyvalvalMetvalPheserThrSerAlaPheGlyAlaTyrPh 340
vo da	340 eLysLeuthrGlnGlyGl, 	eLysLeuThrGInGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaProValSe 360
yo da	360 rAlaGInProValAspAl 	GInProValAspAlaSerValGIyLeuAlaTrpLeuAlaValGIySerMetCysLe 380
ço da	380 uPheIleAlaGly-PheAl(1141 CTTCATCGCCGGAGGTC	laValGlyTrpGlyProIleProTrpLeuLeuMetSerGluI 400
δλ	400 lePheProLeuHisValLys	sGlyVa
qQ	1157	1157
VO 4	20 etAlaPheLeuValTh	<pre>sGluPheSerSerLeuMetGluValLeuArgProTyrGlyA 4</pre>
an	ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι	
Q Pp	440 laPheTrpLeuAlaSerA 	eralaPheCysIlePheSerValLeuPheThrLeuPheCysValP 460
νς α	460 rogluthrlysglylystrthfleugludlutl(nrLeuGluGlnIleThrAlaHisPheGluGlyArg 477
RESU ABL9 ID	JLT 9 90126 ABL90126 standard; CDNA; 11	56 BP.
ACA	ABL90126;	
X E i	24-MAY-2002 (first entry)	
X E S	Human polynucleotide SEQ ID	NO 688.
KW W W W W W W W W W W W W W W W W W W	Cytostatic; immunosuppre antiallergic; hepatotrop vulnerary; anticonvulsan cardiant; gene therapy; in neurological disease; in	<pre>ssive; nootropic; neuroprotective; antiviral; ic; antidiabetic; antiinflammatory; antiulcer; t; antibacterial; antifungal; antiparasitic; to core; imune disorder; cardiovascular disorder; fection; human; secreted protein; gene; ss.</pre>
XX SO	Нс	
Nd	WO200190304-A2.	
4 G	29-NOV-2001.	

us-09-886-954a-1.rng

121 TrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuVal 140	108	141 AlaProValTyrIleSerGluIleAlaTyrProAlaValArgGlyLeuLeuGlySerCys 160	GTCTACATCTCCGAAATCRCCTACCCAGCAGT	<pre>161 ValGlnLeuMetValValValValClyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGlu 180 161 ValGlnLeuMetValValValValClyIleLeuClu 180 163 GTGCAGCTAATGGTCGTCGCGCATCCTCGGCCTAGCCTGGGGC 222</pre>	lleuglyCysValProProSerLeumetLeuLeuleumetCys 	201 PheMetProGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAla 220 		343 GCCTGGGNTTCCTGTGGGGCTCCGGGGGGCTGGGAAGACCCCCCCCATCGGGNCTGAG 402	241 GINSerPheHisLeuLeuLeuArgGInProGlyIleTyrLysProPheIleIleGly 260 	<pre>261 ValSerLeuMetAlaPheGInGInLeuSerGlyValAsnAlaValMetPheTyrAlaGlu 280</pre>	30 58	301 IleGlnValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArgLeu 320 	583 ATCCAGGTGCTGTTCACAGCTGTGGCGCGCTTCATCATGGACAGAGGCGGGGGGGG	LysLeuThrGluGlyGlyProGlyAsnSerSerHisValAlalleSerAlaProValSer 	703 AAGCTGACCCAGGGTGGCCCTGGCAACTCCTCGCACGCATGACGCCATCTCGGCGCGCCTGTCTT 762	<pre>361 AlaGlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCysLeu 380</pre>	PheIleAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGluIle 4	823 TITURIGECEGETEGEGEGEGEGEGEGEGEGEGEGEGEGEGEGEGE	Trucctvtgcargtabggcgtggcgacggcgacggcgargtgcgtcgtggcgcgcgcggcggcggcgggcgggggggg	AlaPheLeuValThrIysGluPheSerSerLeuMetGluValLeuArgProTyrGlyAla	GSCTTTTCTYGKGACCAAGGAGTTCAGGAGGCCTCATGGAGGTCCTCAGGCCCCTATGGAGCC	441 PheTrpLeuAlaSerAlabheCysTlePheSerValLeuDheThrLeuDheCysValPro 460 	461 GluThrLysClyLysThrLeuGluGluIleThrAlaHisPheGluGlyArg 477	1062 10
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	qa	σλ	qu	QY Db	Q A d	ð f	5	qa	QV Db	QY	ζζ	SY.	ස්	SV.	qu	QY DP	5 f	an Ào	q	δ.	qu	ъ д	<i>х</i> о	Db RESULT
XX PF 18-MAY-2001; 2001WO-US016450.	AA PR 19-MAY-2000; 2000US-0205515P.	XX PA (HUMA-) HUMAN GENOME SCI INC.	AA PI Birse CE, Rosen CA;	XX DR WPI; 2002-122018/16. DR P-PSDB; ABB89717.	A. Novel 1405 isolated polypeptides, useful for diagnosis, treatment and PT prevention of neural, immune system, muscular, reproductive, PT gastrointestinal, pulmonary, cardiovascular, renal and proliferative PT disorders.	Claim 4; SEQ I	The invention relates to novel genes (ABL89449-ABL90853) and pro (ABB89040-ABB90444) useful for preventing, transting or ameliorat medical conditions to the version or cannot the second of the second second second second second second second	isolated from a range of human tissues disclosed in the The nucleic acids, proteins, antibodies and (ant) agonie	the diagnosis, treatment and prevention of: (a) cancer, e.g. ) ovarian cancer and other cancers of the adrenal gland, bone, breast, gastrointestinal tract, liver, lung, or urogenital; (	andemia, autoimmute thyroiditis, diabetes mel multiple sclerosis, rheumatoid arthritis and cardiovascular disorders such as myocardial i	) (e) metrological diseases e.g. cerebral anoxia and epiler infections diseases such as viral, bacterial, fungal and pa infections. Note: The sequence data for this patent did not the printed specification, but was obtained in electronic f from wind or fire wind or hour was obtained in electronic f	Sequence 1156	<pre>ament Scores: 5.45e-137</pre>	: 72.12% Mismatches: 68.36% Indels: 6	US-09-886-954A-1 (1-477) x ABL90126 (1-1156)	QY     1 MetThrProGluAspProGluGluThrGlnProLeuLeuGlyProProGlyGiserAla     20       Db     53 ArGaCGCCGGGGGGCCAGGGGAAAACCCAGCCGCTTCrGGGGGCAR     108	erPhe	108	07 41 GIYPheAlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProPro 60 Db 108	61 AlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValVhrLeuGlyAla	Db 108108 108	QY B1 AlaAlaGlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeu 100		10

<pre>ID AAD12574 standard; cDNA; 1461 BP. XX AAD12574; XX 25-SEP-2001 (first entry) DT 25-SEP-2001 (first entry) XX UNA protein having hydrophobic domain encoding cDNA clone HP10784. XX UNA protein having hydrophobic domain encoding cDNA clone HP10784. XX UNA protein having hydrophobic domain encoding cDNA clone HP10784.</pre>	Alignment	ment Scores:
AAD12574; 25-SEP-2001 (first entry) Human protein having hydrophobic domain encoding CDNA clone HP10784.	1	
25-SEP-2001 (first entry) Human protein having hydrophobic domain encoding cDNA clone HP10784. Human budwonbobic domain, gang tharany, nutritional cumplement.	Pred. N	
Human protein having hydrophobic domain encoding cDNA clone HP10784.	Percent Percent	score: Percent Similarity Beet Local Similar
times. budrowhohio domain, gang therawy, mutritional gunolament.	Query Match DB:	latch:
cell proliferation; timunomodulatory; autoimune disorder; antimicrobial;	3-60-SU	US-09-886-954 <b>A-1</b>
multiple sciencesis; ineumacoud architles; insultim-dependent unductes; haematopoiesis; tissue growth activity; Parkinson's disease; cytostatic; Huntington's disease; Alzheimer's disease; chemotatic; chemokinetic;	δy	
haemostatic; thrombolytic; tumour growth inhibitor; anabolic; contraceptive; antiinfertility; antiinflammatory; ss.	4 <u>0</u>	
Homo sapiens.	λ Γ	
Key Location/Qualifiers CDS 61.849	ar ya	
/*tag= a /product= "Human protein having hydrophobic domain" /note= "CDS is specifically is claimed in claim 3"	qC	
W0200149728-A2.	QY I	
12-JUL-2001.	<b>a</b> n (	
28-DEC-2000; 2000WO-JP009359.	A5 6	901 GCGGC
	2	
03-FEB-2000; 2000JP-00026862. 03-MAR-2000; 2000JP-00058367.	40 Z	361 TTGC 121 TroMe
(PRCT-) PROTEGENE INC. (SAGA ) SAGAMI CHEM RES CENT.	4 4	
Kato S, Kimura T;	Q	141 AlaP:
WPI; 2001-418355/44. P-PSDB; AAE06579.	дu	
Human proteins with hydrophobic domains and the nucleic acids encoding them, useful for preventing diagnosing and treating e.g. cancer,	Q P	161 ValG      541 GTGC/
auu 3e 28	Q	181 TrpA: 
The present sequence is human protein with hydrophobic domain encoding	qŨ	
cDNA clone HP10784. The polynucleotide and polypeptide of the invention may be used in the prevention, diagnosis and treatment of diseases	oy :	
associated with inappropriate polypeptide expression. The polynucleorides may be used to produce the polypeptide, by inserting the nucleic acids into a host cell and culturing the cell to express the protein. The	a õ	220 aAla
polynucleotides and its complementary sequences may also be used as DNA probes in diagnostic assays and also used in gene therapy. The	qu	718 -
polypeptides may also be used as antigens in the production of antibodies and in assays to identify modulators of polypeptide expression and	QY	240 uGln
accivity, the polypeptides and nucleats actds may be used as nuclicitude supplements, to modulate cytokine and cell proliferation activity, to	дq	- 812
modulate immuse stimulation of suppression (e.g. for the readment of microbial infections and autoimmune disorders such as multiple sclerosis, commercial contribution and insulia Amondana Aisborck) to modulate	δλ	260 yVal
incumation and instruction and instruction diagramments, to modulate the head of the modulate tissue growth activity (e.g. for the recommendation of partiments discore Juntiments) discored Juntiments.	đđ	718 -
creatment of faintients of undersoner, numering on a undersone und frainter of disease, to modulate activituand inhibin activity (e.g. for controlling fertility) to modulate chemorearic and chemokinetic activity. Fo	QY	280 uThr
retrittery, co modurate themotecter and themotecter activity to modulate receptor modulate haemostatic and thromoolytic activity to modulate receptor licend activity to modulate inflammation and to inhibit fumour drowth	da	718 -
TIGATIN ACCTATELY CO MORTAGE TITERAMMACTOR ATTA CO TITERATE COMPARE & CONTACT	Q	300 lile

Page 12

us-09-886-954a-1.rng

Tue Sep 28 09:09:40 2004

U; 0 Other;

rIlePheGluGluAlaLysPheLysAspSerSerLeuAlaSerValValGlyVa 300 111eGlnValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArgLe 320 Met ProGluThr ProArg PheLeu Leu Thr GluHis Arg Arg GluGluAla-Met Al aLeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspProProIleGlyAlaGl nSerPheHisLeuAlaLeuLeuArgGlnProGlyIleTyrLysProPheIleIleGl [SerLeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPheTyrAlaG] 324 Length: Matches: Conservative: Mismatches: Indels: Gaps: 456 G; 309 T; 0 (1 - 1461)ΰ (1-477) x AAD12574 6.03e-126 1554.50 67.85% 67.64% 63.27% BP; 195 A; 501 y: rity: ..... à

<pre>Claim 3; Page 82-83; 124pp; English. The present invention relates to GLUTX proteins are AAB65941). The GLUTX proteins are relate alucose carriers GLUT1-GLUT5 and have hexose bind function. The GLUTX proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins may be used in the function. The GLUTA proteins proteins for function. The GLUTA proteins function. The function function for rat GLUTA function. The GLUTA proteins for the present sequence i for rat GLUTA function. The GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the present sequence i for rat GLUTA proteins for the proteins for the proteins for the proteins for the proteins for the proteins for the proteins for the proteins for the prot</pre>	ore: 972.50 rcent Similarity: 61.19% st Local Similarity: 64.97% ery Match: 39.58% : 4 -09-886-954A-1 (1-477) x AAF55871 (1- -09-886-954A-1 (1-477) x AAF55871 (1- -09-886-954A-1 (1-477) x AAF55871 (1-	CCCGCGTCGCCTGAAGAG	199 10 10 10 10 10 10 10 10 10 10 10 10 10	<pre>103 CysSerValProPheValAlaGlyPheAlaValIfeThrAlaAlaGlnAspValTrpMet 12 103 CysSerValProPheValAlaGlyPheAlaValIfeThrAlaAlaGlnAspValTrpMet 12 346 TccGcTGrCcCrcGGCcTrGGCTArGGCArGGCTGGGTGGTGG40 123 LeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCyGGlyValAlaSerLeuValAlaPro 14 123 LeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCyGGlyValAlaSerLeuValAlaPro 14 104 06 CTTCTGCGGGGGGGGGGGGGGGGGGGGGGGGGGGCTCGGGGGG</pre>	QY       143 Variyrisesrcjulneklaryrproklavalkrgolyreuteudig/sercysvalgin 162         Db       466 Gr@racreftendaklaryrproklavalkrgolyreuteudig/sercysvalgin 162         Db       466 Gr@racreftendaklaryrproklargedegegertegegegescercegege 25         Qy       163 LeumetvalvalvalgiyrleleuteuklaryrpreuklagiyrrpvalleuGlurrparg 182         Db       526 CrCarGeGerGrefterdearcertereklagiyrrpvalleuGlurrparg 182         Db       526 CrCarGeGerGrefterekleuteuklaryrLeuklagiyrrpvalleuGlurrparg 182         Db       526 CrCarGeGerGrefterekleuteuklaryrLeuklagiyrrpvalleuGrefteregerGerGege 585         Qy       183 TrppephievelteuteuklaryrCerderterekleuketLeuLeukleukleuket 202	<pre>586 TedScruesceGeeGeeGeeGeeCreartcreeGrearearccreeCrearearearcarearearcarearearearearearearearearearearearearea</pre>	 ccaggac yīleTyr :::
aryrPh (       cracrr ovalse         frorcrc frorcrc frorcrc frorcrc frorcrc frorcrc	900       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1	440 laPheTrpL 440 laPheTrpL 928 CCTTCTGGC 460 roGluThrL 988 CTGAAACTA	SULT 11 555871 AAF55871 standard; CDNA; 2011 BP. AAF55871; 17-APR-2001 (first entry)	DB Rat GLUTX3 coding sequence. XX Rat; GLUTX3 gene therapy; vaccine; hexose transport modulator; XW hexose transport disorder; ischaemia; diabetes; hyperglycaemia; ss; XW hypoglycaemia; glucose metabolism disorder; neurodegenerative disease. OS Rattus sp. XX W0200104145-A2.	18-JAN-2001. 18-JUL-2000; 14-JUL-2000; 14-JUL-1999; 27-AUG-1999; 27-AUG-1999; 27-AUG-2000; 13-TTTL-2000;	13-JUL-ZUUU; ZUUUUS-UU61613 (UYLA-) UNIV LAUSANNE. Thorens B, Ibberson M, Ul WPI; 2001-112615/12. P-PSDB; AAB66938.	PT Nucleic acids encoding GLUTX glucose transporter proteins, useful in the PT prevention, diagnosis and treatment of hexose transport disorders, e.g. PT ischemia and diabetes.

Tue Sep 28 09:09:40 2004

.

2004
9:09:40
Sep 28 0
Tue Se

<pre>PR 22-OCT-2001; 2001US-0330457P. PR 19-FEB-2002; 2002US-0357144P. XX PA (BLOM-) BIOMEDICAL CENT. XX PI Baranova AV, Yankovsky NK, Kozlov AP, Lobashev AV, Krukovskaya LL; XX DR WP1; 2003-175241/17. DR PPSDB; ADA84077.</pre>	XX XX PT PT PT PT PT PT PT PT PT PT	XX XX XX C The invention relates to a novel method for determining if a nucleic acid CC is a marker for a predetermined phenotype/cell type of interest from a CC biological species. The method comprises performing a global comparison CC of a group of expressed sequence tags (ESTS) known to be expressed in the CC phenotype/cell type of interest with all ESTs expressed in normal tissue CC phenotype/cell of interest. A method of the inventially expressed in the CC phenotype/cell of interest. A method of the inventially for CC determining whether a nucleic acid is a marker for a predetermined	CC phenotype or cell type of interest from a biological species, preferably CC Arabidopsis or human. The cell type of interest is an abnormal cell such CC as a tumour cell, and the predetermined phenotype is a stress-induced CC phenotype such as hypersonatic stress or high salt conditions. A method CC of the invention is also useful for determining the progression of colon	CC cancer in a human, for detecting a tumour cell, and for regulating or cc preventing the growth of a tumour cell. An antibody of the invention is cc useful for detecting the absence or presence of peptides encoded by cc tumour-associated markers. A polypeptide of the invention is useful as an cC immunogen for vaccinating an animal. The present sequence encodes a cc tumour-associated antigen of the invention.	sequence         235         br; 403         br; 403         br; 403         br; 404         b	ษสุยร: (4076 (1-2356) เนาแทนกรรมเวิษาร์ไม	12       CCCGaGaGaGaCCCGGCCAGGAGGCCGCGCGGCCGGAGCTACGAC         15       CCCGAGAGAGCCCGGCCAGGAGCCGCCGGCGGCCGGAGCTACGAC	72 ACCTTCCCCGAGAAGCCGCCCCGTCGCCGGGGGGGGGGG	Qy       25      ArgValPheLeuAlaAlaPheAlaAlaLeuGlyProLeuSerPheGlyPhe       42         Db       132       AACAAAAAGGGGGGGCCACCATCGCCGCGGGGGGGGGGG	QY       43 AlaleuGlyTyrSerSerFrohlatleProSerLeuGlnArgAlaAlaProProAlaPro 62         Db       192 GCCTGGTCTACACATCCCTGTCAGCCCTGGAGGCGCTCCTTGGATCCTGACCTG 251	Qy       63 ArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaValThrLeuGlyAlaAlaAla 82         Db       252 CATCTGACCAAATCCCAGGCATCCTGGTTTGGGTCGTGTTCACCCTGGGGGGGG	Qy       83 GlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLySLeuSerLeuLeuLeu       102         Db       312 GGAGGCCTGAGGTGATCCTCAACGACCTCCTGGGCCGGAAGCTGAGGTCATGTTC       371	· · ·
Db760AACGTGGGAGACAGAGTAGCGAGTGTGGGGGGGGGGGGG	<pre>294 AlaSerValValValGlyValIleGlnValLeuPheThrAlaValAlaAlaLeuIleMet 304 311333333333333333333333333333333333</pre>	Db       1000 GACTGGCCGGCGGCAAAAGTCCTGCTCTATGGTCGAGCAAC 1059         OY       334 SerAlaPheGlyAlaTyrPheLyBLeuThrGlnGlyGlyProGlyAsnSerSer 351         OY       334 SerAlaPheGlyAlaTyrPheLyBLeuThrGlnGlyGlyProGlyAsnSerSer 351         Db       1060 CTGAGGCTGGGGGCTGTATGTCCAGCTTGTGGCCAAGGACTGTGGLACTGGG         Db       1050 CTGAGGCTGGGGGCTGGTATGTCCAGGACTTGTGGCCAAGGACTGTGG 1119         Qy       352 HisValAlaIsIeSerAlaProValSerAlaGInProValAspAlaSerValGlyLeuAla 371         Db       1120 GAGATGAGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGG	<pre>372 TrpLeuAlaValGlySerMetCysLeuPheIleAlaGlyPheAlaValGlyTrpGlyPro 391 372 TrpLeuAlaValGlySerMetCysLeuPheIleAlaGlyPheAlaValGlyTrpGlyPro 391 1180 CTGATACCCTGCTGCTGCTCCTTCATTATGGGGCTAGGGGCTGCGGGGGCCC 123</pre>	<pre>Qy 392 IleFrorbeuleuktGerGluftePheProLeukisValLysGlYalAlaThrGly 411 Db 1240 ATCACTGGCTCLATGTCTAGGTTCTCCCCTGCGTGGCGGGGGGGGGG</pre>	Qy       432       MetGluValLeuArgProTyrGlyAlaPheTrpLeuAla-SerAlaPheCysIlePheSe       451         Db       1359       AGTGAATGCCTTCGGCCTCCAGGTGCCTTTCTTCTTCTTCTTCTTCTCGCCTGCG       1418         Db       1359       AGTGAATGCCTTCGGCCTCCAGGTGCCTTTCTTCTTCTTCTTCTTCTGCCTGC	QY 471 ralahisPheGluGlyarg 477             Db 1479 GGCCTTCTCCACACTCGC 1497	RESULT 12 ADA84076 ID ADA84076 standard; DNA; 2356 BP.	AC ADA84076; XX DT 20-NOV-2003 (first entry)	Human SLC2A6 gene.		OS Home sapiens. XX PN W02002103028-A2. XX	27-DEC-2002. 30-MAY-2002;	PR 30-MAY-2001; 2001US-0293999P.

,

<pre>us-09-886-9; vall1=rhrAlaAlaGlnAspValfrpMet 122 cr:::::::::::::::::::::::::::::::::::</pre>	Alignment Scores:
<pre>Tue Sep 28 09:09:40 2004 Tue Sep 28 09:09:40 2004 103 CysserValProbheValAlaGlyPheAlaV 372 TredsCr9GGCGGCTGGGGGGCTGGGGGGTTGGG 123 Inultyr1eSerGluIteAlaTyrProAlaV 132 inultyr1eSerGluIteAlaTyrProAlaV 143 ValTyr1eSerGluIteAlaTyrProAlaV 143 ValTyr1eSerGluIteAlaTyrProAdGGTTGG 143 ValTyr1eSerGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG</pre>	Qy 445 -SerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluThrLysG1 464

Alignment Scores:

445 -SerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluThrLysGl 464

•

us-09-886-954a-1.rng

Qy       292       SerLeuAlaSerValValValGIVValIteGInValLeuPheThrAlaValAlaAlaLeu 311         Db       972      GCAGCCATCGTTGGGGCCGGGCGCGCGCGCGCGCGCTC (1022         Qy       312       IleMetAspArgAlaGIYArGArgLeuLeuValLeuSerGIYValValValPhe 331         Qy       312       IleMetAspArgAlaGIYArGArgLeuLeuValLeuSerGIYValValPhe 331         Db       1023       ACCATGGACCTGCAGGGCCGCAAGGTGCCGCTCCTGGCGCGCTC       1022         Qy       332       SerThrSerAlaPheGIyAlaTYrPheLySLeuThrGInGlyGIYProGlyAsnSerSer       351         Db       1033       SccAACGACTCTGGGCTGTACATCCACTTTGGGCCCTGGGCTGTGGG       1133         Qy       352       HisValAlaIIESerAlaPheGIyAlaTYrPheLySLeuThrGInGlyGIYProGlyAsnSerSer       351         Db       1033       GCCAACCTGGGCTGTGACATCCACTTTGGGCCCTGGGGCTGTGGGGCTGTGGGGCTGTGGGGCTGTGGGGCTGTGGGGCTGTGGGGCTGTGGGGCTGTGGGGCTGTGGGGCTGTGGGCTGTGGGGCTGTGGGCTGTGGGGCTGTGGGGCTGTGGGCTGTGGGCTGTGGGCTGTGGGCTGTGGGCTGTGGGGCTGTGGGCTGTGGGCGCGGGGCGGGGGCCTGGGGCCTGGGGCTGTGGGCGGGGCGGGGGG	<pre>366 AlaservalGiyLeuAlarpLeuAlavalGiyserMetCysLeuPherleAlaGiy 384 366 AlaservalGiyLeuAlarpLeuAlavalGiyserMetCysLeuPherleAlaGiy 384 1194 GCACCCGCTGGCTACCTCACCCTGGTGGCCCCTGCTGCTCTTCATCATGGGC 125 385 PheAlavalGiyTrpGiyProTleProTrpLeuLeuMetSerGluIIePheProLeuHis 404 536 Fiil                                   </pre>	Qy       425       Thirly GlupheSerserieuMetGluValleuXeproTyrGlyAlabheTrpJeuAla       444         Db       1374       [[[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]]       [[1]] <t< th=""><th>RESULT 14 AAK94338 ID AAK94338 standard; CDNA; 2390 BP. XX AC AAK94338; XX DT 06-NCV-2001 (first entry) XX Human full-length CDNA, SEQ ID NO: 3033. XX Human; full length CDNA; CDNA synthesis; oligo-capping; ss. XX Homo saniens XX Momo saniens</th><th></th><th>PT 830 Primers useful for synthesizing full length cDNA clones and their use</th></t<>	RESULT 14 AAK94338 ID AAK94338 standard; CDNA; 2390 BP. XX AC AAK94338; XX DT 06-NCV-2001 (first entry) XX Human full-length CDNA, SEQ ID NO: 3033. XX Human; full length CDNA; CDNA synthesis; oligo-capping; ss. XX Homo saniens XX Momo saniens		PT 830 Primers useful for synthesizing full length cDNA clones and their use
Pred. No.:       1.18e-73       Length:       2356         Score:       58.50       Matches:       227         Score:       59.22%       Conservative:       7         Percent Similarity:       59.22%       Conservative:       7         Best Local Similarity:       59.22%       Conservative:       7         Derry Match:       7       39.01%       Indels:       47         Query Match:       7       39.01%       Indels:       47         DB:       0.01%       Indels:       47       12         DB:       0.01%       1.2356)       12       12         Cy       3       ProGlucluthrGlnProLeuLeuGly       14         DD:       12       20018ULTHrGlnProLeuLeuGly       14         DD:       12       20018GaGaGCGCGAGGGGGGGGGGGGGGGGGGGGGGGCCGGGGGGGCCGGGGGG	Db       72 ACCTTCCCCGAGAAGCCCCCGCCCCCCCGGGGACAGGGGCCCGGGACCCGGCACCGGGACCCGGGACCCGGGACCCCGGGCACCCCGGGCACCCCGGGGACCCGGGCACTTCGGCCCCGGCACTTCGGCCCCGGCAATTCCGGCACTTCGGGCTAT 191         Qy       25ArgvalbheLeuAlaAlaAlaAlaAlaAlaAlaAlaLeuGlyProLeuSerPheGlyPhe 42         Db       132 AACAAAGGGTGTCCCGGCCACCTCGCCGCGGGGAGTGCTTCGGCTATTCGGCTATTCGGCTAT 191         Qy       43 AlaLeuGlyTyrSerSerProAlaIIeProSerLeuGlnArgAlaAlaProProAlaPro 62         Db       192 GCCTGGTCTACACTCCCTGCCGCGGCGGGGGGCGCGGCGCCTTGGGCGCTCCTTGGACCTCG         Db       192 GCCTGGTCTACACTCCCTGTCATCCCGGCGCGGGGCGCGCCTCGGGGGCGCCCTGGGGGGCGCG         Qy       63 ArgLeuAspAspAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaAlaA	Qy       83 GlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeuLeuLeu 102         Db       312 GGAGGCCTGAGGTGCATGATCCTCAACGACCTCGGGCGGG	ValTyrIleSerGiuIleAlaTyrFroAlaValArgGlyLeuLeuGlySerCysValGIn       :::	Qy       203       ProGluThrProArgPheLeuLeuThrGlnHisArgArgGInGluAlaMetAlaAlaLeu       222         Db       572       CCCAACTCGCCGCGCTTCTCGCCGCGCGGGGGGGGGGGG	

.

The invention relates to primers for synthesising full length CDNA clones. 830 CDNA molecules encoding a human protein have been isolated been determined. Primers for synthesising the full length CDNA molecules have been determined. Primers for synthesising the full length CDNA are useful for clarifying the function of the protein encoded by the CDNA. The full length clones were obtained by construction of full length enriched CDNA libraries that were synthesised by the oligo-capping method. The primers enable the production of the full length human CDNA of the invention. Note: The sequence is a full length human CDNA of the invention. Note: The sequence data for this patent did not form part of the prime 181 AACAAAAGGGTGTTTCCTGGCCACCTTCGCCGCGGGCAATTTCAGGTTTTGGGTAT 240 CCCGAGAGAGACCCGGCCAGCAGCCGCTGCTGCTGGGAGCCCGAGGGCCCGGACTACGAC 120 121 ACCTTTCCCCGAGAAGCCCCCCCCCCCCGGGGGGGGGCCCCGGGGCCCCGGGACCCTGCAG 180 241 GCCCFGGTCTACACTCCCCFGTCCCAGCCCTGGAGCGCCTCCTTGGATCCTGACCTG 300 GlyGlyValLeuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeuLeu 102 GGAGGCCTGAGTGCCATGATCCTCAACGACCTCCTGGGCCGGGAAGCTGAGCATCATGTTC 420 CysSerValProPheValAlaGlyPheAlaValIleThrAlaAlaGlnAspValTrpMet 122 LeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCysGlyValAlaSerLeuValAlaPro 142 
 ValTyrIleSerGluileAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGln 162 -----ArgValPheLeuAlaAlaPheAlaAlaAlaAlaLeuGlyProLeuSerPheGlyPhe 42 AlaLeuGlyTyrSerSerProAlaIleProSerLeuGlnArgAlaAlaProProAlaPro 62 ArgueuAspAspAlaAlaAlaSerTrpPheGlyAlaValThrLeuGlyAlaAlaAla 01 CATCTGACCAAATCCCAGGCATCCTGGGTTGGGTCCGGGTCCGGGTCCGGGGGGCCGGGCC SEQ ID NO 3033; 1380pp + Sequence Listing; English. 739 G; 450 T; 0 U; 0 Other; ------realyGlyGerAlaProArgGlyArg 2390 227 78 164 12 Length: Matches: Conservative: Mismatches: 3 ProGlu---AspProGluGluThrGlnProLeuLeuGly Indels: Gaps: US-09-886-954A-1 (1-477) x AAK94338 (1-2390) 2390 BP; 398 A; 803 C; 1.21e-73 958.50 59.22 44.08 39.01 \$ in genetic manipulation Best Local Similarity: Query Match: Percent Similarity: Alignment Scores: Pred. No.: Claim 8; Sequence 61 15 from EPO 25 63 83 103 143 43 361 421 123 481 541 Score: BB:  $\delta$ Ч  $\delta$ qq  $\Sigma$ qq  $\widetilde{O}$ qq 5 dd  $\delta$ dd q  $\mathcal{O}_{\mathcal{O}}$ P  $\delta$ d  $\mathcal{S}$ 

14

24

360

82

LeuMetValValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArg 182 crcarecaciterrecerercitercereracecerrecerecrecerecrecerecerece TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCysPheMet 202 

163

ð g  $\delta$ 

601

183

661

g

us-09-886-954a-1.rng

accelion/Qalififers     07     43       "Frederics" "Human SCLDA"     07     63       "Prederics" "Human SCLDA"     07     63       "Berours"     07     64       "Its-000017411     07     90     90       "Its-000017411     07     91     90       "Its-00001741     07     91     90       "Its-00001741     07     91     90       "Its-00001741     07     91     91       "Its-00	sapiens.	qa	140 AACAAAAGGGTGTTCCTGGCCACCTTCGCCGCAGGGGGGATTTCAGCTTTGGGTAT
"Freddart a "Freddart"         "Bunant SCI23*         Db         200           "Freddart a "Freddart"         "Bunant SCI23*         Db         200           80-U8017419.         Dt         200         200           80-U80174119.         Dt         200         200           80-U8017411111111         Dt         200         200           80-U8017411111111111111111111111111111111111	Location/Qualifiers 381561	δ	
300-1301/419.     09     63       300-1301/419.     09     63       310-3128005     09     91       311-3128015     00     91       311-3128015     00     91       311-3128015     00     91       311-3128015     00     91       311-3128015     00     91       311-3128015     00     91       311-312     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       311-315     00     91       312-315     00     91       312-315     00     91       312-315     00     91       312-31     00     91       312-31     00     91       312-31     00     91       312-31	"Human	q	
B0-UG017419.     Db     Db     260       B0-UG017419.     DC     DC     DC     DC       B1-03250755.     DC     DC     DC     DC       B1-03250755.     DC     DC     DC     DC       B1-03250755.     DC     DC     DC     DC       B2     DC     DC     DC     DC	W0200298467-Al.	ò	
<ul> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG017419.</li> <li>INC.UG01741419.</li> <li>INC.UG0174144.</li> <li>INC.UG017444.</li> <li>INC.UG017444.</li> <li>INC.UG017444.</li> <li>INC.UG017444.</li> <li>INC.UG017444.</li> <li>INC.UG017444.</li> <li>INC.UG017444.</li> <li>INC.UG017444.</li> <li>INC.UG01744.</li> <li>INC.UG01744.<!--</td--><td>12-DEC-2002.</td><td>đ</td><td></td></li></ul>	12-DEC-2002.	đ	
URG-03260056.     Db     320       URG-03250259.     Db     320       JLC.     Dc     440       JLC.     Db     320       main GD, Belvin M, Francis-Lang H, Li D, Funke RD,     Db     320       (19.)     Constraint M, Francis-Lang H, Li D, Funke RD,     Db     320       (19.)     Constraint M, Francis-Lang H, Li D, Funke RD,     Db     320       (19.)     Constraint M, Francis-Lang H, Li D, Funke RD,     Db     320       (19.)     Constraint M, Francis-Lang H, Li D, Funke RD,     Db     320       (19.)     Constraint M, Francis-Lang H, Li D, Funke RD,     Db     320       (19.)     Constraint M, Francis-Lang H, Li D, Funke RD,     Db     200       (19.)     Constraint State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State Sta	03-JUN-2002; 2002WO-US017419.	QY	
IRC. IRC. IRC. TRC. <ptrc.< p=""> <ptrc.< p=""> <ptrc.< p=""> <ptrc.< p=""> <ptrc.< p=""></ptrc.<></ptrc.<></ptrc.<></ptrc.<></ptrc.<>	05-JUN-2001; 2001US-0296076P. 10-OCT-2001; 2001US-0328605P. 15-FEB-2002; 2002US-0357253P.	d V	
<ul> <li>mem (GP, Belvin M, Francis-Lang H, Li D, Funke RP, 91</li> <li>13.</li> <li>13.</li> <li>14.</li> <li>14.</li> <li>14.</li> <li>15.</li> <li>14.</li> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>10.</li> <li>10.</li> <li>11.</li> <li>11.</li> <li>12.</li> <li>12.</li> <li>12.</li> <li>12.</li> <li>12.</li> <li>12.</li> <li>12.</li> <li>13.</li> <li>14.</li> <l< td=""><td>(EXEL-) EXELIXIS INC.</td><td>qа</td><td></td></l<></ul>	(EXEL-) EXELIXIS INC.	qа	
113.     113.     114.       114.     Inderective p53 function e.g. cancer, by assaying purified defective p53 function for the present invertion, generation of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the present of the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supervised in the p53 supex the p53 supervised in the p53 supex the p53 supervised in	Belvin M, Francis-Lang H, Li D, Funke	Q	
(date p53 pathway modulating agent as therapeutic target0y143(date crise p53 function e.g. cancer, by assaying purified0y16538-39; 580p; English.38-39; 580p; English.0y16538-39; 580p; English.38-39; 580p; English.0y18338-39; 580p; English.0; 1680y18338-39; 580p; English.0; 1680y203ame of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the p53 was of the	WPI; 2003-201283/19. P-PSDB; ABP58363.	ମ୍ବପ	-0
<pre>amily 2 (SiC2A) polypeptide or nucleic acid with a test 33-39; SBP9; English. 33-39; SBP9; English. 33-39; SBP9; English. 34-39; SBP9; English. 3550 3560 3560 3570 3570 3570 3570 3570 3570 3570 357</pre>	:herapeutic target / assaying purifie	A A A	
<ul> <li>38-39; Söpp; English.</li> <li>38-39; Söpp; English.</li> <li>ence is that of human solute carrier type 2A (SLC2A)</li> <li>ence is that of human solute carrier type 2A (SLC2A)</li> <li>egned to identify modifier were them orthologues</li> <li>and polypoptides are such modifier were them and orthologues</li> <li>and polypoptides are autractive activation, genetic</li> <li>polypoptides are attractive activation success are balled enclosed and an orthologues</li> <li>and polypoptides are attractive dray targets for the polypoptides are attractive by signaling</li> <li>concert. The invention provides in vitro and in vivo</li> <li>concert. The invention provides in vitro and in vivo</li> <li>concert. The invention provides in vitro and in vivo</li> <li>suscill for understanding the association of the psi susting SLC2A function. Modifiers and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and disease conditions and for sandard using scalar in ordani and scalar using scalar in ordani and scalar using scalar in ordani and scalar sandard using scalar in the sandard scalar sandard scalar sandard scalar in the sandard scalar stata at the intervence scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar stata scalar st</li></ul>	acid with a	δλ	
<ul> <li>ence is that of human solute carrier type 2A (SLC2A)</li> <li>(ST5203 and 993001; In the present invention, genetic, genetic, genetic, hp53 was overcerested. In the present invention, genetic, and 993001; In the present invention, genetic, and 993001; In the present invention, genetic, and 993001; SLC2As are and polypeptides for such modificative drag targets for the data secondation of a polypeptides are attractive dray targets for the secondation of the p53 signaling cancer. The invention provides in vitro and in vivo</li> <li>(9) 203</li> <li>(10) 203</li> <li>(11) 203</li> <li>(11) 203</li> <li>(11) 203</li> <li>(11) 203</li> <li>(11) 203</li> <li>(11) 203</li> <li>(12) 203</li> <li>(11) 203</li> <li>(11) 203</li> <li>(11) 203</li> <li>(12) 203</li> <li>(11) 203</li> <li>(12) 203</li> <li>(12) 203</li> <li>(13) 203</li> <li>(14) 203</li> <li>(13) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203</li> <li>(14) 203&lt;</li></ul>	Disclosure; Page 38-39; 58pp; English.	q	
ich p53 was overexpressed. Human orthologues0y203and polypeptides) of one such modifier were then0y203and polypeptides are attractive drug argets for the0y203er protectins with sugar transpate for the0y233ano polypeptides are attractive drug argets for the0y233ano polypeptides are attractive drug argets for the0y233ano polypeptides are attractive drug argets for the0y233ano polypeptides are attractive drug an SLC2A or its0y233ano provides and disease conditions and for the p530y233stin strathing agents that act by inhibiting or fb3-related0y235serie for and theraspeutic modalities of p53-related0y235serie for and disease conditions and facase conditions0y276serie for and theraspeutic modalities and phosphothions and facase conditions0y276serie oligonucleotides and phosphothioate morpholino0y276sense oligonucleotides and phosphothioate morpholino0y232sense oligonucleotides and phosphothioate0y232sense oligonucleotides and phosphothioate0y232sense oligonucleotides and phosphothioate0y232sense oligonucleotides and phosphothioate0y232sense oligonucleotides and phosphothioate0y243sense oligonucleotides and phosphothioate0y243sense oligonucleotides and phosphothioate0y243sense oligonucleotides and phosphothioate243<	(SLC2A) , geneti ay in	QY	183 TrpLeuAlaValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCysPheMet
<pre>d polypeptides are attractive drug targets for the bologies associated with a defective p53 signalling cancer. The invention provides in vitro and in vivo sing SLC2A function. Modulation of an SLC2A or its cancer and therapeutic moderstanding the p53 members in normal and disease conditions and for soft and therapeutic modalities of p53-related of members in normal and disease conditions and for soft and therapeutic modalities of p53-related soft and therapeutic modalities of p53-related of members in normal and disease conditions and for transport or binding activity, e.g. by affecting an SLC2A modulators include small molecules, mortleic dusing end of y 826 C; 752 G; 466 T; 0 U; 0 Other; y 443 A; 826 C; 752 G; 466 T; 0 U; 0 Other; y 443 A; 826 C; 752 G; 466 T; 0 U; 0 Other; y 443 A; 826 C; 752 G; 466 T; 0 U; 0 Other; y 43 A; 826 C; 752 G; 466 T; 0 U; 0 Other; y 330 01% Thength: 2487 y 30 01% Thendels: 164 y 30 01% Thendels: 2487 y 30 01% Thendels: 47 y 1 x ABZ24790 (1-2487) y 41 (1                                  </pre>	Droscophila in which p53 was overexpressed. Human orthologues (poiynucleotides and polypeptides) of one such modifier were then identified, including nucleic acids 12735203 and 938031. SLC2As are divose transnotter proteins with succar transnotter domains. SLC2A	Q dq	
<pre>cancer. The Invention provides in vitro and in vivo sing SLC2A function. Modulations and for an SLC2A or its useful for understanding the association of the p53 members in normal and disease conditions and for any of the specifies of p53-related 2A-modulating agents that act by inhibiting or enhancing differently or indirectly or prover any success wodulators include small molecules, nucleic acids, wodulators include small molecules, nucleic acids, esense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino ed) wodulators include small molecules, nucleic acids, sense oligonuclectides and phosphothioate morpholino is 44.00% if 1.277-73 Length; 228 gen.co is 44.00% if adoccodecondecondecondecondecondecondecon</pre>	c acids and polypeptides are attractive drug targets for the ient of pathologies associated with a defective p53 signalling	δγ	
ameders in normal and disease conditions and for ostic and threapeutic modalities of p53-related off modulating agents that act by inhibiting or enhancing transport or binding activity, can be identified using woullators include small molecules, nucleic acids, ed)       0y       256         atreetly or indirectly, e.g. by affecting or enclasting transport or binding activity, can be identified using modulators include small molecules, nucleic acids, ed)       0y       256         atreetly or indirectly, e.g. by affecting activity, can be identified using activity, can be identified using additional prosphothione       0y       256         atract of a plosphothione       0 U; 0 Other;       0       0       276         atta of a subble small molecules, nucleic acids, best of a subble small molecules, nucleic acids, additional state shall at a state shall at a state shall at a state shall at a state shall at a state shall at a state shall at a state shall at a state shall at a state shall at a state state shall at a state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state sta	y, such as cancer. The invention provides in vitro and in vivo to of assessing SLC2A function. Modulation of an SLC2A or its constructed in view indext and in the association of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statement of the statemen	qq	
<pre>A modulators indirectly, e.g. by affecting an SLC2 transport or binding activity, can be identified using embed by a succept of the sume and phosphothioate morpholino ed) ed) ed) ed) ed) ed) ed) i 443 A; 826 C; 752 G; 466 T; 0 U; 0 Other; j 985 S; 733 Length: 2487 5958 S; 0 Oy 292 1.27e-73 Length: 2487 5958 S; 0 Oy 292 1.27e-73 Length: 2487 5958 S; 0 Oy 292 1.27e-73 Length: 2487 5958 S; 0 Oy 292 1.27e-73 Length: 2487 5928 S; 0 Oy 292 1.27e-73 Length: 2487 5928 S; 0 Oy 292 1.27e-73 Length: 2487 5928 S; 0 Oy 292 1.27e-73 Length: 2487 7 J A A OB 39.01% Matches: 16 7 Gaps: 12 7 T X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ24790 (1-2487) 7 X ABZ2</pre>	y and its members in normal and disease conditions and for y and its members in normal and disease conditions and for poing diagnostic and therapeutic modalities of p3:related	λα f	
ed)       Qy       276         ; 443 A; 826 C; 752 G; 466 T; 0 U; 0 Other;       D       920         956.50       Matches:       227       920         958.50       Matches:       278       920         958.50       Matches:       12       0Y       292         7.01%       Indels:       47       0Y       312         7.01%       Indels:       47       0Y       312         7       Gaps:       12       D       D       1031         7       AspProGluciurnurginproLeuieuGly       12       D       D       1031         77       X Abz24790 (1-2487)       12       D       D       1031         77       X Abz24790 (1-2487)       12       D       D       1031         77       X Abz24790 (1-2487)       12       D       D       D       D         7       AspErcoluciuriurnerolinproLeuieuGly       12       Q       Q       Q<	expression, directly or judirectly, e.g. by affecting an SUCA expression, directly or indirectly, e.g. by affecting an SUCA on such as transport or binding activity, can be identified using is provided. Modulators include small molecules, nucleic acids, ddies, antisense oligonucleocides and phosphothioate morpholino	ov du	
1.27e-73       Length:       2487       920         598.50       Matches:       227       990         598.50       Matches:       227       990         59.22%       Conservative:       78       990         59.22%       Conservative:       78       990         59.22%       Conservative:       78       990         39.01%       Indels:       47       990         7       Gaps:       12       0y       312         71) x Abz24790 (1-2487)       12       0y       313         77) x Abz24790 (1-2487)       12       0y       313         77) x Abz24790 (1-2487)       12       0y       313         77) x Abz24790 (1-2487)       12       0y       332         -AspProGluGIuThredinProLeuLeuGly       12       0y       332         -AspProGluGIuthredinProLeuLeuGly       12       0y       332         -AspProGluGIuthredinProLeuLeuLeuGly       12       0y       332         -AspProGluGIuthredinProLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuLeuL	oligomers (claimed) Sequence 2487 BP; 443 A; 826 C; 752 G; 466 T; 0 U; 0 Other;	QY	
915.70       Matches:       270       980         59.22%       Conservative: 78       980         59.22%       Conservative: 78       980         39.01%       Indels:       47       980         7       Mismatches:       164       980         7       Indels:       47       980         7       Gaps:       12       0y       312         7       Gaps:       12       0y       333         7       SeptrocludiuthrdinproleuleuGly	- 44000	ୟ 	0 0
: 44.08%       Mismatches: 164       0y       312         39.01%       Indels: 47       0y       312         7       Gaps:       12       Db       1031         71) × ABZ24790 (1-2487)       0       2487       0y       332        AspProGludIurhrGlnProLeuleuGly       14       0y       332        AspProGludIurhrGlnProLeuleuGly       14       0y       332         (     )       :::               0y       332         GaGACCGGGCATGCAGGAGGCCGGAGGGCCGGGACTACGAC       79       0y       352        ProProGlyGlyGlySerAlaProArgGlyArg       24       Db       1142         ccGabGAAGCGCCCCGTGCGGGGGGGGGGGGGGGGGGGGGCGGGGCCGGGGGTCGGGGGCCCCGCGGGGTCGGGGGCCCGGGGGCGGGGCGGGTCGGGGGCGGGTCGGGGGG	958.50 Matches: 59.22% Conservative:	5 8	ונ
(1-477) x Abz24790 (1-2487)       Qy       332         odluAspProGluGluThrGinProLeuLeuGly       14       Qy       332         odluAspProGluGluThrGinProLeuLeuGly       14       Db       1091                                  11            Db       1091                                               Db       1091         CGaGaGAGACCCGCCATCGCAGGAGCCCGGGGCCCGGGGCCCGGGCCCGGGCCCGGGCCCGGGG	ity: 44.08% Mismatches: 39.01% Indels: 7 Gaps:	<u>ک</u> کر	<pre>312 IleMetAspArgAlaGlyArgArgLeuLeuLeuValLeuSerGlyValValWatValPhe        :::::       :::::       :::::      </pre>
14     09       ACTACGAC     79     Db     1091       ACTACGAC     79     Qy     352        24     Db     1142       CCCTGCAG     139     Qy     366	-477) x ABZ24790	2	
ACTACGAC 79 ACTACGAC 79 Qy 352	3 ProGluAspProGluGluThrGlnProLeuteuGly1        :::	<u>දි</u> සි	
CCCTGCAG 139 Db 1142 CCCTGCAG 139 Qy 366		QY	
CCCLGCAG 133 00 366	24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	qq	
04	cccrecae 13 heglvPhe 42	QV	366 AlaSerValGlyLeuAlaTrpLeuAlaValGlySerMetCysLeuPheIlaGly

1141

 $\mathcal{S}$ 

¥

1202 GCACCCGCTGGCTACCTCACCCTGGTGCCCCTGGCCACCATGCTCTTCATCATGGGC 1261	PheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGluIlePheProLeuHis 404		405 ValLysGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeuMetAlaPheLeuVal 424	1322 GCCGFGGGCGFGGGCCTFGCGFGCGGGCGGGCGGGCGGCGCGCCTFCGFCCTC 1381	425 ThrLysGlupheSerSerLeuMetGluValLeuArgProTyrGlyAlaPheTrpLeuAla 444	ALTI III III III III ALTI IIIIIIII ALTI IIIIIIIII IIIIIIIIII	445 -SerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValProGluThrLysG1 464	141 CGCGGCCATCTGCTTGGTGGGGCCGGGGGGGGGGGGGGG	yLysThrLeuGluGln1leThrAlaHisPheGluGlyArg 477	AGGGTCCTGGAGCAGAGTCCTTCTTCCCGCATCGGGAGA 1543
1202	385	1262	405	1322	425	1382	445	1441	464	1501
qq	Q	qa	αy	qu	οy	qq	QY	qq	QY	qq

Search completed: September 28, 2004, 02:12:01 Job time : 518 secs

# This Page Blank (uspto)

4
0
0
200
0
4
••
თ
0
0:
60
-
œ
ñ
0
Sep
01
Tue
2
н

Ltd.	r 7	cn time 111 Seconds alignments) Million cell updates/sec	. CVPETKGKTLEQITAHFEGR 477			1365418			2004 170632 13412/app_query.fasta_1.647 -MINMATCH=0.1 -LOOPCI=0 (=blosum62 -TRANS=human40.cdi 100 -TRH MIN=0 -ALIGN=15 -MINLEN=0 -MAZLEN=20000000 70632 13412 -NCPU=6 -ICPU=3 (CGAPOP=10 -LONGLOG GGAPOP=10 -LONGLOG SLEXT=7	* *	y chance to have a le result being printed, distribution.	Description	Sequence 4731, Ap Sequence 4762, Ap Sequence 17, Appl Sequence 17, Appl Sequence 1, Appl Sequence 13, App Sequence 135, App Sequence 135, App Sequence 135, App Sequence 135, App Sequence 135, App Sequence 135, App
GenCore version 5.1.6 (c) 1993 - 2004 Compugen Lt	frame_plus_p2n mode	2004, 01:55:59 ; Search ti (without alic 2384.789 Mill		Ygapext 0.5 Ygapext 0.5 Fgapext 7.0 Delext 7.0	277475446 residues	chosen parameters:	0	0% 100% 45 summaries	Command line parameters: -MODEL=frame+_p2n.model -DEV=x1p -MODEL=frame+_p2n.model -DEV=x1p -Q=/cg12_1/USF7C_sp001_p/US09886954/runat_27092004_170632_13412/apj -DB=r5sued Patents NA -OPMT=fastap -SUFFIX=rni -MIXNATCH=0.1 -LOOP -DD=r155=45 -DOCALIGN=200 -THR ACX-100 -THR MAX=100 -LISF=45 -DOCALIGN=200 -THR SCORE=DE -THR MAX=100 -THR MAX=10 -USFR=LCOAL -OUTFMT=pto -NORM=Ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=0 -USER=LCOAL -OUTFMT=pto -NORM=Ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=0 -DOBE_LCOAL -DOTFMT=TPO -NORM=Ext -HEAPSIZE=500 -MINLEN=0 -MAXLEN=0 -DSF=LCOAL -DOTFMT=TPO -NORM=Ext -SCORES=0 -MAIT -DSFBLOGC -DSV -DN MAP -LARGEDUERY -NEG SCORES=0 -MAIT -DSFBLOGC -DOT -LONGLOG -DSV TIMEOUT=100 -MARN TIMEOUT=0.5 -DELOP=6 -DELOPET=7	<pre>ttents NA:*</pre>	results predicted h to the score of th of the total score	SUMMARIES ID	US-09-489-039A.4731 US-09-489-039A.4731 US-09-489-039A.4762 US-09-679-686B-17 US-09-679-686B-1 US-09-679-686B-1 US-09-643-597-135 US-09-643-597-135 US-09-643-135 US-09-664-21B-135 US-09-664-21B-135 US-09-221-107-135 US-09-221-107-135
Gen Copyright (c)	search, u	ñ	US-09-886-954A-1 2457 1 MTPEDPEETQPLLGPPGGSA	LOSUM62 gapop 10.0 gapop 10.0 gapop 6.0	682709 seqs, 277	hits satisfying	ength: 0 ength: 200000000	Minimum Match 0% Maximum Match 10% Listing first 45	parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: parameters: param	ssued_Pa :: /cgn2 :: /cgn2 :: /cgn2 :: /cgn2 :: /cgn2 :: /cgn2	No. is the number of r greater than or equal derived by analysis o	% Query Match Length DB	24.6 23.5 23.2 23.2 23.2 23.1 1675 4 221.1 1675 4 220.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 2856 4 20.9 2856 4 20.9 2856 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.9 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 20.0 2856 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 2856 4 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20
	OM protein - nucleic Bun on:		Title: U Perfect score: 2 Sequence: 1	Scoring table: B Y P D	Searched: 6	Total number of h	Minimum DB seg le Maximum DB seg le	Post-processing:	Command line para MODEL=frame+ p2n- -0=/cgust_1/USPET -D=rsued parent -DOPEXT=0-UNITS -UODEXT=0-UNITS -UDDE=LCCAL -OUTF -UDDE=LCCAL -OUTF -ODDE=LCCAL -OUTF -DDE-CATECAT	Database : 11 22 22 23 24 33 25 6 6	Pred. No. i score great and is deri	Result No. Score M	12 25 23 57 66 53 24 57 65 53 25 53 53 53 53 53 53 53 53 53 5

09-291-922-19 09-591-022-8 09-591-022-8 09-891-022-8 09-489-0378-8 09-489-0314-855 10-162-012-445 10-162-012-445 09-291-922-9 09-291-922-9 09-291-922-9 09-291-922-9 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-1 09-291-922-9 09-291-922-9 09-291-922-9 09-291-922-9	09-543-681A ALIGNMENTS
	SU
<ul> <li>Э.Э.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф.Ф</li></ul>	341
22222222222222222222222222222222222222	
	•
ーーーーーーース 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

υ

Sequence 19, Appli Sequence 79, Appli Sequence 8, Appli Sequence 8, Appli Sequence 855, App Sequence 43, Appli Sequence 43, Appli Sequence 43, Appli Sequence 23, Appli Sequence 9, Appli Sequence 23, Appli Sequence 23, Appli Sequence 23, Appli Sequence 1, Appli Sequence 11, Appli Sequence 12, Appli Sequence 13, Appli Sequence 12, Appli Sequence 13, Appli Sequence 13, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli Sequence 14, Appli

US-09-489-039A-4731 RESULT 1

currents of the sequence 4731, Application US/09489039A Patent No. 6610836 Fatent No. 6610836 GENERAL INFORMATION FAPELICATUR Gary Breton et. al TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO KLEBSIELLA TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TITLE REFERENCE: 2709.2004001 CURRENT APPLICATION NUMBER: US/09/489,039A CURRENT APPLICATION NUMBER: US/09/489,039A PRIOR FILING DATE: 1999-01-29 NUMBER OF SEQ ID NOS: 14342 SEQ ID NO 4731 LENGTH: 1545 CURRENT 1545

TYPE: DNA ORGANISM: Klebsiella pneumoniae

; ORGANISM: Klebs: US-09-489-039A-4731

Alignment Scores: Pred. No.:

1545 156 86 187 9 9 9 Length: Matches: Conservative: Mismatches: Indels: Gaps: 5.87e-53 605.00 51.60% 33.26% 24.62% Percent Similarity: Best Local Similarity: Query Match: Score: DB:

US-09-886-954A-1 (1-477) x US-09-489-039A-4731 (1-1545)

154 TCGCCGCGGACGCAGATGATGATTTCGTTTCTTTCCCCCCGCGGGCG 213 20 AlaProArgGlyArgArg------ValPheLeuAlaAlaPheAlaAlaAla 34 35 đ  $\delta$  $\delta$ 

LeuGlyProLeuSerPheGlyPheAlaLeuGlyTyrSerSerProAlaIleProSerLeu 54 ::: ||| |||||| :::||| :::||| :::||| :::

<pre>QY 402 ProtentiarallyscilytalAffricityleCystalLeuffringInternetAla 421 DB 1288 CGGTMAAAATGCGCGAACTTGGGGAACTTGGGAACTGGGGAACTGGGGAACTGGGGAACTGGGGGAACTGGGGGAACTGGGGGAACTGGGGGAACTGGGGGAACTGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGAACTGGGGGGGG</pre>	Db190CACACCCAGGAGTGGTCAGCTCATGATGTTCGGGGGGGTCGGCGGTCGGC249Qy87GlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeuLeuLeuCySSerValPro106Db250AGCGGCTGGTCTTTTCAAACTGGGCCGGAAAAAGAGGCCTGATGATCGGCGGTCCTC309Oy107PheValAlaGlyPheAlaValItEThrAlaAlaGlnAspValTrpMetLeuLeuGlyGly126Db310TTCGTCGGGTTGCTGTTCTGCGGCCGGAAAAAGAGGCCTGAAGGTCTGTGTGGGGTTTCC369Oy107PheValAlaGlyPheAlaValItEThrAlaAlaGlnAspValTrpMetLeuLeuGlyGly126Db310TTCGTCGGGGTTGGCGGTTGCGCGGCGGGGGGGCGGGGGG
214 Greetradortradortradortradortradorentarrocosondortradortrar 273 214 Greetradortradortradortradortradorentarrocosondortradortradorentar 273 227 Accadortradortradortradortradortradorentarrocosondortradortradore 221 228 GlinkrgalakiaProFrakiaProkryalendiyaJyngeleulerthradiyPhabla Vallte 114 229 GilyhrigiyLeulseIteuleuleuryServiaItorhigiliiii (1)11111111111111111111111111111111	LeuValLeuSerGlyValValWetValPheSerThrSerAlaPheGlyAlaTyrPheLys     ::: CTGAAAATCGGCTTTAGCGTGATGGCGCTGGGCACTCTGGTGCTGGGCTACTGC LeuThrGlnGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaProValSerAla              CTGATGCAGTTCGACAATGGCACCTACTGGTGTGGGCTACTGC LeuThrGlnGlyGlyProGlyAsnSerSerHisValAlaIleSerAlaProValSerAla                :::      :::       :::

٠

us-09-886-954a-1.rni

Tue Sep 28 09:09:40 2004

Page 2

2004
õ
2
0
:40
••
60
60
0
m
28
Sep
ຫ້
Tue
2
-

đa	30 GAAATCGCCCCAGAAAAATTCGCGGCAGTATGATTTCCATGTACCAGCTGATGATCACC 48
ky Ag	167 ValdlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGluTrpArg 182 :::                ::: 490 ATCGGGATCCTTGGCGCCTATCTCTGTGACACCGCTTTCAGCTACGCGGCGCGCGC
QY	E 20
qu	550 TGGATGCTCGGGGGTTATCATTCCGGGGGGGGTTTTGCTGGTGGTGGTGGGGGTTATCTTCCTG 609
A P	<pre>203 ProGluThrProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeu 222</pre>
ζζ	55
qQ	AAATCCGTGAAAGC 72
δγ	225 LeuTrpGlySerGluGlnGlyTrpGluAspProProIleGlyAlaGluGlnSerPheHis 244
qа	730 CTGAAGGTAAAACAGTCCGGCTGG
σλ	- <b>1</b>
qu	754TCGCTGTTTTAAAGACAACAGCAACTTCCGCCGCGCGCGGGGGTTTCCTCGGCATCCTGCTG 810
λο i	9
au	BII CAGGTGATGCAACAGTTCACCGGGGATGAACGTCATGTACGCGCGCG
රි යි	<pre>284 GluGluAlaLysPheLysAspSerSerLeuAlaSerValValGlyVal 300 11 11 11 11 11 11 11 11 11 11 11 11 11</pre>
ζζ	ValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGlyArgArgLeu 32
Ъb	י ה
QV	
ЧU	991 ACGCTGATCCTTGGCTTTATCGTGATGGCCGCGGGA 1026
QY	341 LysLeuThrGlnglyGlyProglyAsnSerSerHisValAlaIleSerAlaProValSer 360
рb	0
QY	361 AlaGlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaYalGlySerMetCysLeu 380
Db	
QY	381 PheileAlaGlyPheAlaValGlyTrpGlyProIleProTrpLeuLeuMetSerGluile 400
qa	B TTCATCGTCGGTTTCGCCATGAGCGCCGGCCCACTGATTTGGGTACTGCTCCCGAAATC 11
QY	401 PheproLeuHisValLysGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeuMet 420
дq	1168 CAGCGCTGAAAGGCCGCGACTTCGGTATCACCTGCTCCACAGGGGAGCCAGGATTGCC 1227
QY	44
qa	
δy	441 PheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysValPro 460
qq	1288 TTCTGGGTGTACGGCGGTCTGAACGTGCTGTTTATCCTGCTGACGCTGATGCCGG 1347
δλ	461 GluThrLysGlyLysThrLeuGluGInIleThrAlaHisPheGluGlyArg 477
дD	48
RESULT 3 US-09-023 ; Sequenci	3 23-655-1104 nce 1104, Application US/09023655

210 CTGATATTTGCCATCAGTTGCTACCAGTTGGCTCTTTCCAATTTGGCTACAACACTGGG 329 330 GTCATCAATGCTCCTGAGAAGATCATAAAGGAATTTATCAATAAAACTTTGACGGACAAG 389 390 GGAAATGCCCACCTCTGAGGTGCTGCTCACGTCCTTCTGGTCCTGGCCCATA 449 26 ValPheLeuAlaAlaPheAlaAlaAlaLeuGlYProLeuSerPheGlYPheAlaLeuGlY 45 56 75 GEBERAL INFORMATION: GEBERAL INFORMATION: APPLICANT: Cocks, Benjamin G. APPLICANT: Cocks, Benjamin G. APPLICANT: Jeffrey J. Seilhamer APPLICANT: Jeffrey J. Seilhamer TITLE OF INVENTION: EXPRESSION FITLE OF INVENTION: EXPRESSION NUMBER OF SEQUENCES: 1508 NUMBER OF SEQUENCES: 1508 CORRESPONDENCES: 1508 CORRESPONDENCES: 1508 CORRESPONDENCE ADDRESS: ADDRESSEE: INCYTE PHARMACEUTICALS, INC. STATE: J174 PORTER DRIVE CITY: PALO ALTO STATE: CALFORNIA CONNTRY: USA 57 ---AlaAlaProProAlaProArgLeuAspAspAlaAlaAlaSerTrpPheGlyAlaVal -----46 TyrserserProAlalleProserLeuGlnArg---------3915 152 88 51 9 9 9 ZIP: 94304 CORPUTER READABLE FORM: COMPUTER READABLE FORM: COMPUTER: IBM PC compatible COMPUTER: IBM PC compatible OPERATING SYSTEM: PC-DOS/MS-DOS OPERATING WORD PLC CURRENT APPLICATION DATA: APPLICATION NUMBER: US/09/023,655 Length: Matches: Conservative: Mismatches: Indels: US-09-886-954A-1 (1-477) x US-09-023-655-1104 (1-3915) APPLICATION FILING DATE: FILING DATE: FILING DATE: CLASSIFICATION: ATTORNEY/AGENT INFORMATION: NAME: Zeller, Karen J. RADESISTRATION NUMBER: 97,071 REFERENCE/DOCKET NUMBER: PA-0001 US REFERENCE/DOCKET NUMBER: PA-0001 US TELEFONNICATION INFORMATION: TELEFONNICATION INFORMATION: TELEFONNE: (650) 945-4166 INFORMATION FOR SEQ ID NO: 1104: ENGTH: 3915 base pairs LENGTH: 3915 base pairs TYPE: nucleic acid STRANDEDNESS: single Gaps: 9.58e-49 570.50 49.90% 31.60% 23.22% FILING DATE: HEREWITH CLASSIFICATION: PRIOR APPLICATION DATA: APPLICATION NUMBER: LIBRARY: GENBANK Percent Similarity: Best Local Similarity: ; CLONE: 9183684 US-09-023-655-1104 ; Patent No. 6607879 Alignment Scores: Query Match: DB: Pred. No.: Score:  $\delta$ g q  $\delta$  $\delta$ qq  $\delta$ рр

96 ArgLysLeuSerLeuLeuLeuCysSerValProPheValAlaGly------PheAla 112

 $\delta$ 

Db1527 GCCTACGTTTTATTATTATTATTATTATCTCCCGGGCTTTGGGCTTTAGCTTTCCY457 PheCysValPrOGlumThrUNGULYPETHLEUGLUGINTILETHTAIHISPHEGLUGIYCY457 PheCysValPrOGlumThrUNGULYPETHLEUGUGINTILETHTAIHISPHEGLUGIYDb1584 TTCAAAGTCCCTGAGACCCGTGGCAGGACATTACCATCGGGGCCTTTGAGGGGCY477 ArgCY477 ArgCY477 ArgCY477 ArgCY477 ArgDb1644 CAG1644 CAG1646RESULT68061-7Sequence 17, Application US/096796868FESEURAGENERAL INFORMATIONFESEURAGENERAL INFORMATIONFALLCAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLIER USAPPLICAWT ALLIER USAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENAPPLICAWT ALLENCEAPPLICAWT ALLENCEAPPLICAWT ALLENCEAPPLICAWT ALLENCEAPPLICAWT ANDRER: ECJ/09/679,686APPLICAWT APPLICATION NUMBER: ECJ/09/679,686APPLICAWT APPLICATION NUMBER: ECJ/09/1111PROMERE OF INVENTIONPROMERE OF INVENTIONPROMERE OF INFORMATIONPROMERE OF INFORMATION <th>Alignment Scores:Alignment Scores:Pred. No.:2.179-46Matches:150Score:542.50Matches:150Score:543.50Matches:202Score:543.50Matches:202Score:511.11722.004Mismatches:202Duery Match:22.004Mismatches:6125.004Mismatches:6180Duery Match:22.004Mismatches:6129.01717.017322.004Mismatches:6129.01717.019396.05050AGGACMAGGACTACCCTGGCAGGCACCCCCCCGCGCGCGCGCCGCGCCCGCGCCCCGCGCCCCCC</th>	Alignment Scores:Alignment Scores:Pred. No.:2.179-46Matches:150Score:542.50Matches:150Score:543.50Matches:202Score:543.50Matches:202Score:511.11722.004Mismatches:202Duery Match:22.004Mismatches:6125.004Mismatches:6180Duery Match:22.004Mismatches:6129.01717.017322.004Mismatches:6129.01717.019396.05050AGGACMAGGACTACCCTGGCAGGCACCCCCCCGCGCGCGCGCCGCGCCCGCGCCCCGCGCCCCCC
bb       510       ädöcöcharrtakröcrifarrencakoroforranden and an an an an an an an an an an an an an	QY       257       PherlefeleGiyvalSerleuwetAlaPheGinGinLeuserGiyvalAenAlaValMet 276         Db       1050       ArtichTruccurrenscencercreagedserrerrengesarcangestrer 1109         CY       1110       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       1111       11111       11111       11111       1111<

•

us-09-886-954a-1.rni

-----

Tue Sep 28 09:09:40 2004 -

.

								GAGGGCCGAG 209 aAlaLeuGly 36 :::	CATCGTCGGCTCCTTCGĠĊ 269 alleProSerLeuGlnArg 56	305	72 3GACGTGTAC 356
						1675 147 ve: 147 : 1190 13	1 (1-477) x US-09-679-686B-1 (1-1675) GluGluThrGlnProLeuLeuGlyProProGlyGlySerAlaProArgGlyArgArg GaGaaracesconcorrenting	uggergergergergegegegegegegege AlaAlaPheAlaAlaAlaAlaIeuGly :::	GCTTG ProAl		oProAlaProArgLeuAspAspAlaAlaAlaSerTrpPhe
	1 7 9 R	1000 000	or t or t	or t	or t or t	Length: Matches: Conservati Mismatches Indels: Gaps:	9-686B-1 (1-16 31YProProGlyGly            	ValPheteuAl	3GCTACTTCATCCT( LeuGlyTyrSerSer 	TCGGCTATGACCTCGGGGGTCTCCAGC	aProProAlaProArgLeuAspAspAlaAlaAlaSerTrpPhe :::      GGCGTGACTTCCATGGACGACTTCCTGGTGAAGTTCTTC
88	9-686B-1 Construction US/09679686B Cons. 66224343 LINFORMATION: LANT: Lightner, Stephen M. LANT: Lightner, Jonathan E. LANT: Lightner, Jonathan E. LANT: Rafalski, J. Antoni LANT: Thorpe, Catherine J. LANT: Thorpe, Catherine J. LANT: Thorpe, Catherine J. LANT: Thorpe, Catherine J. LANT: Thorpe, Catherine J. TAPPLICATION NUMBER: US/09/6 TEFLING DATE: 2003-01-16 FILING DATE: 2003-01-16 FILING DATE: 2003-01-16	3: 1999-04-07 NOS: 24 NOS: 24 Dft Office 97 Ys	: п = а, с, g : п = а, с, g	: 11 = a, c, g	n = a, c, g n = a, c, g	2.21e-45 532.50 44.89% 27.84% 21.67%	477) x US-09-679 [ThrGlnProLeuLeuG ::::::		ULULAUGAGGCAAGATCACCGGCTACTTCATCC ProLeuSerPheGlyPheAlaLeuGlyTyrSerS       ::::/	CTTCGGCTATGACC	oProAlaProArgi - -GGCGTGACTTCCA
 1536 GGA 153	SULT 5 -09-679-686B-1 sequence 1, Application US/05 sequence 1, Application US/05 SEDERAL INFORMATION: APPLICANT: Allen, Stephen M. APPLICANT: Allen, Stephen M. APPLICANT: Allen, Stephen M. APPLICANT: Allen, Stephen M. APPLICANT: APPLICATION: HEXOSE C TITLE OF INVENTION: HEXOSE C PILLE REFERENCE: BB1160 US NC CURRENT APPLICATION NUMBER: CURRENT FILLING DATE: 2003-C PRIOR APPLICANTON NUMBER: CURRENT FILLING DATE: 2003-C PRIOR APPLICANTON NUMBER: OPDIOR FILLING DATE: 2003-C		ION: (1624) INFORMATION RE: KEY: Unsure ION: (1638) INFORMATION	o i	LON: (15/10) INFORMATION XE: CEY: unsure (ON: (1674) INFORMATION -686B-1	ment Scores: No.: .: .: .: Local Similarity: . Match:	-886-954A-1 (1-47 7 GluGluTh 150 Gadazara		210 CICIACGA 37 ProLeuSe	GGATC	306
qq	RESULT 5 US-09-679-6 Sequence Sequence APPLICAN APPLICAN APPLICAN APPLICAN APPLICAN APPLICAN CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT CURRENT	PETON PETON SOFTWAL SOFTWAL SEQ ID 1 LENGTI FEATUN FEATUN	DCCAT DCTHER FEATU FEATU NAME/I LOCAT	NAME/ NAME/ DOTHER FEATU	OTHER FEATUR FEATUR FEATUR I FEATUR NAME/I FOOTHER US-09-679-	Alignment Pred. No. Score: Percent S Best Loca Query Mata DB:	US-09-88 QY Db	vo 40	a Zo	4 <u>2</u>	da Pa

2004
402
:00:
:60
28
Sep
Tue

	<pre>context Information: in = a, c, g or t context INFORMATION: n = a, c, g or t rearrow: (533) nAME/REX: unsure name/REX: unsure context INFORMATION: n = a, c, g or t rearrow: (552) context INFORMATION: n = a, c, g or t rearrow: (552) context INFORMATION: n = a, c, g or t nAME/REY: unsure nAME/REY: unsure context INFORMATION: n = a, c, g or t us-09-679-666B-15</pre>
Qy       72       73       73         Gy       73       74       74         Gy       73       74       74         Gy       74       74       75         Gy       74       74       75         Gy       75       75       75         Gy       74       75       75         Gy       74       74       75         Gy       75       74       74         Gy       75       74       74         75	Qy303 ValLeuPheThrAlaValAalaLeuTleMetAspArgAlaGlyArgArgArgLeuLeuLeu 322Db1164 GTCTTCGCCACGGTGGTCCATCGTCGACGGGCGGCGGCGGCGGCGGCGGGCG

.

•

.

.

QY286AlaLysPheLysAspSerSerLeuAlaSerValValGlyvalIleGlnVal303Db1086ArcGGGTTTAAGGATGATGCTGCTCTAATGTCGGGGTGCTGGGGTGTCATGTT1145Cy304LeuPheThrAlaValAlaLeuIleMetAspArgArgArgArgLeufeuLeuVal323Db1146GTCGCAACTTGTGTCATGTGTGAGGGGTGGGTGGTGTCTTTU45Db1146GTCGCAACTTGTGTCTCAATTTATGGTGGGGGTGGGGGGGG	QY     324 LeuserGlyValValMetValPheSerThrserAlaPheGlyAlaTyr     339       Db     1206 GAAGGTGGAAGTCCAATTGCCAGGCTGTAGTTGCCAGCTGCAATTGGAGCAAAG     1265	Qy     340     PheLysLeuThrGinGlyGlyProGlyAsnSerSerHisValAlalleSerAlaProVal     359       0     0     0     0       1266     TTTGGAACTGATGGGAAACCCAGGT	QY     360 SeralaGInFrovalAspalaSerValGIyLeuAlaTrpLeuAlaValGIySerMetCys     379       Db     1290    GATTTGCCAAAGTGGGATATGGTGGGTTCTCTCTTCATTTGC     1334	QY       380 LeuPheIleAlaGlyPheAlaValGlyFrpGlyFroIleFroTrpLeuLeuMetSerGlu       399         ::::::::::::::::::::::::::::::::::::	QY       400       IlePheProLeuHisValLysGlyValAlaThrGlyIleCysValLeuThrAsnTrpLeu       419         V                        :::::       11       11         Db       1395       ATCTTTCCCTTGGAGATTCGTTCAGCTCAGAGATATCATCATCAGTGATCATGCTT       1454	Qy       420 MetAlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgProTyrGly       439         Db       1455 TTCACTTCTTGATGCACAAGTCCTTCTTGACAATGCTTTGCCAATGAAGTTCGGC       1511	Qy       440 AlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPheCysVal 459         Db       1512 TTGTTCCTCTTTTGCCTTCTTGGTGTTGATCATGACATTCTTCGTCTACTTCTTCTTG 1571	QY     460     ProgluthrlysglyLysthrleuglugInfle     470       Db     1572     CCCGAAACAAAGGGCATTCCAATTGAAGAAATG     1604	RESULT 7 US-09-643-597-135 5 Sequence 135, Application US/09643597 7 Patent No. 6426072	; GENERAL INFORMATION: ; APPLICANT: Wang, Tongtong ; APPLICANT: Fan, Liqun ; APPLICANT: Kalos, Michael D.	Bangur, Chaitar Hosken, Nancy Fanger, Gary R. Li, Samuel X.	; APPLICANT: Wang, Aijun ; APPLICANT: Skeiky, Yasir A.W. ; APPLICANT: Honderson, Robert A. ; APPLICANT: McNeill, Parricia D.	<pre>FITLE OF INVENTION: COMPOSITIONS AND METHODS FOR THE THERAPY TITLE OF INVENTION: AND DIAGNOSIS OF LUNG CANCER FILE REFERENCE: 210121.455C11 CURRENT APPLICATION NIMERE: 15/00/243 507</pre>	FILING DATE: 2000-00-21/01-01 FESE DATE: 2000-00-21 FESE DATE: 2000-00-21 FESE DATE: 2000-00-21 FESE DATE: 2000-00-21/01-01 FESE DATE: 2000-00-21/01 FESE DATE: 2000-00-21	; LENGTH: 2856 ; TYPE: DNA ; ORGANISM: Homo sapien US-09-643-597-135	Alignment Scores: Pred. No.: 3.76e-43 Length: 2856 Score: 514.50 Matches: 145
Alignment Scores:       9.02e-44       Length:       1960         Pred. No.:       510.00       Matches:       148         Score:       510.00       Matches:       95         Percent Similarity:       21.55%       Conservative:       95         Best Local Similarity:       28.96%       Mismatches:       198         DB:       41.08%       Indels:       70         DB:       US-09-886-954A-1 (1-477)       x US-09-679-666B-15 (1-1960)	udluThrGlnProLeuLeuGlyPro  :: 3AAAAAATGCCTGCGGGTAGGAGTATTAGCAACG	lyPro    GTGGG	erLeu     TTCTG					alAla CTGTG	Qy     142     ProvaltyrIleserGluIleAlatyrProAlavalArgGlyLeuLeuGlySerCysVal     161       Db     612     CCACTCTANCTATCTGAAATGGCTCCATACAAAATATAGAGGAGCATTGAACATTGGCTTT     671	Qy     162     GlnLeuMetValValValGlyIleLeuLeuAlaTyrLeuAlaGlyTypValLeuGlu     180       ND     672     CAGTTGCTATCATTGGTATCCTTGTGGCCAATGTGTGTAGTATTTCTTTGCTAAA     731	QY 181TrpArgTrpLeuAlavalleuGlyCysValProProSerLeuMet 195 Db 732 AtcAAAGGTGGTTGGGGGTGGAGGTTGAGTTTGGGAGGGGGGG	QY     196     LeuleuleuMetCysPheMetProGluThrProArgPheleuleuThrGlnHisArg     214       11     111     111     111       12     ATCACAGTAGGATCACTAGTCCTTCCAGACACTCCCAATTCCATGATGAAGGGGGGGG	QY     215     ArgGInGluAlaMetAlaNeLeuArgPheLeutrpGlyserGluGlnGly     231       Db     852     CGCGAGAAGGCTCAGGCTCAGCATCAGAAATTCGCGGCATCGACAATGTTGATGATGAAGAG     911	GAAC	QY     247     LeuleuargGInFroGlyIleTyrLysProPheIleIleGlyValSerLeumetala     265       Db     972     TIGTTGCAAAGAAAGTACAGACCCCACCTCACCATGGCAGTGTTCATTC     1025	Qy     266     PheGlnGinLeuSerGlyValAsnAlaValMetPheTyrAlaGluThrIlePheGluGlu     285       Db     1026     TTCCAGCAACTCACTGGAATCAATGTCATCATGTTTTACGCGCCGGTCCTGTTCAGCTCC     1085

us-09-886-954a-1.rni

91 168 99 14		LeuSe	CTGCP
Conservative: Mismatches: Indels: Gaps:	US-09-886-954A-1 (1-477) x US-09-643-597-135 (1-2856)	25 ArgValPheLeuAlaAlaPheAlaAlaAlaLeuGlyProLeuSe	210 CONTRACTORING CONTRACTORING CONTRACTION CONTRACTORING
46.92% 28.83% 20.94% 4	× US-09	ceuAlaAlal	CTGGCTGTG
Percent Similarity: Best Local Similarity: Query Match: DB:	9-886-954A-1 (1-477)	25 ArgValPhel	210 CGCCTCATG
Perce Best Query DB:	US-0	QY	qq

-60-SU	886-954A-1 (1-477) x US-09-643-597-135 (1-2856)
QV	ArgValPheLeuAlaAlaPheAlaAlaLeuGlyProAlaL              :::              :::
qq	rcarecréécrereceaegaécaerecrréécrec
νQ	45 G1y 45
qu	FTCATCAATGCCCCCCCAGAAGGTG
δλ	6TyrSerSerbroAlalleProSerLeuGlnArgAlaAlaProProAlaProArgLeu 64 
qu	
δy	65 AspAspAlaAlaSerTrpPheGlyAlaValValThrLeuGlyAlaAlaAlaGlyGly 84
qa	-rcrgrréééééc 4
QY	85 ValleuGlyGlyTrpLeuValAspArgAlaGlyArgLysLeuSerLeu 100 111
дQ	408 AIGATIGCCTCCTTCTCTGTGGGCCCTTTTCCTTAACCGCCTGCCGGCGGGAATTCAATG 467
QY	101 LeuLeuCysSerValProPheValAlaGlyPheAlaValIleThr 115 111 11111
qа	recredectricerecceccercercaredectriciceaaa
QY	<pre>116 AlaAlaGlnAspValTrpMetLeuLeuGlyGlyArgLeuLeuThrGlyLeuAlaCySGly 135</pre>
qa	525GGCAAGTCCTTTGAGATGCTGATCCTGGGCCGCCTCATCATCAGGTGTGCTGCGGC 581
δy	136 ValAlaSerLeuValAlaProValTyrIleSerGlulleAlaTyrProAlaValArgGly 155 
qu	582 CTGACCACGGGCTTCGTGCCCATGTATGTCGCGGTGAAGTGTCCCCCCACAGCCTTTCGTGGG 641
ov	156 LeuLeuClySerCysValGlnLeuMetValValClyIleLeuLeuAlaTyrLeuAla 175       :::        :::
qu	642 GCCCTGGGCCCTGCACCTGGGCATCGTCGGCCTCGCCTC
δy	176 GlyTrpValLeuGlu
qu	702 deccreascrecarcarcacacacaacaacaccrererererererer
δy	188 GlyCysValProProSerLeuMetLeuLeuLeuMetCysPheMetProGluThrProArg 207
qu	756 ATCTTCATCCCGGCCCTGCTGCAGTGCATCGTGCCCCTTCTGCCCCGAGAGTCCCCCGC 815
QY	208 PheLeuLeuThrGInHisArgArgGlnGluAlaMetAlaAlaLeuArgPheLeuTrp 226            :::::::    :::
дQ	816 TICCTECTCATCAACGECAACGAGGAGGAGGAGGGCCAAGAGGTGCGGC 875
δy	227 GlySerGluGlnGlyTrpGluAspProProIleGlyAlaGluGInSerPheHis 244
qq	876 GGGACAGCTGACGTGACCTGCAGGAGGATGAAGGAGGAGTCGGCAGATGATG 935
ò	245LeuAlaLeuLeuAlaLeuScoffnProGlyIleTyrLysProPhe 257
qq	936 CGGGAGAAGAAGATCATCCTGGAAGCTGTTCCGCTCCCCCGCCTACCGGCCAGCCCATC 995
QY	258 IleIleGlyValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaValMetPhe 277
qq	996 CTCATCGCTGTGCTGCTGCTGCTCGCAGCCAGCCAGCCAG
Q	σ.
dа	1056 TACTCCACGAGCATCTTCCAGAAGGCGGGGGGGGGGGGG
QY	298 ValGlyValIleGlnValLeuPheThrAlaValAlaAlaLeuIleMetAspArgAlaGly 317    ::::::::           ::: ::::::::::::

.

qu	1116	6 TCCGGTATCGTCAACACGGCCTTCACTGTCGTGTCGCTGTTTGTGGTGGAGCGAGGC	3TGGTGGAGCGAGCAGGC 1175
QY	318	8 ArgArgLeuLeuValLeuSerGlyValValMetValPheSerThrS 111111	serThrSerAlaPheGly 337
qQ	1176	6 CGGCGGACCCTGCACCTCAT	1196
QY	338	8 AlaTyrPheLysLeuThrGlnGlyGlyProGlyAsnSerSerHisValAlaIleSerAl	HisValAlaIleSerAla 357 
qu	1197	L 7	Gecercecrescarescessraresceara 1232
σy	358	00	ŝ
qu	1233	3 ACCATCGCGCTAGCACTGCTGGAGCAGCTACCCTGGATGTCCTATCTGAGCATCGTGGCC	TATCTGAGCATCGTGGCC 1292
δy	378		397
qa	1293	3 Y	
δγ	398	æ	<pre>IleCysValLeuThrAsn 417 </pre>
qq	1353	3 GCTGAACTCTTCAGCCAGGGTCCAGCTCCAGCTGCCATTGCCGTTGCAGGCTTCTCCCAAC	GTTGCAGGCTTCTCCAAC 1412
λο τ	418	8 6	MetGluValLeuArgPro 437 :::::: carcasacmenenenenenenenenenen
	1413	3 TGGACCTCAAAITICATIGIGGG	
c q	1473	3 TACGrettcarcarcarcarcarcarcarcarcarcarcarcarcarc	י ר ט
δλ	454	***	uThrLysGlyLysThrLeuGluGluGlnIleThr 471
ЧŨ	1512	2 TTCATCTTCACCTACTTCAAAGTTCCTGGGGCGGGGCGG	ACCTTCGATGAGATCGCT 1571
QY	472	N	
qa	1572	2 TCCGGCTTC 1580	
RESULT 8 US-09-480. CS-09-480. APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI APPLICI	8 8400 8 11 11 11 11 11 11 11 11 11 11 11 11 11	<pre>0-884A-135 00-884A-135 10-884A-135 10-884A-135 10-135, Application US/09480884A 10 INFORMATION: 10 INFORMATION: 10 CANT: Wang, Tongtong 10 CANT: Fanjos, Michael D. 10 pre>	بي ۳. م
QV	25	<pre>55 ArgValPheLeuAlaAlaPheAlaAlaLeuGlyProLeuSerPheGlyPheAlaLeu 11 11 11 11 11 11 11 11 11 11 11 11 11</pre>	ISerPheGlyPheAlaLeu 44

-

	13	Qy     378 MetCysLeuPheIleAlaGlyPheAlaValGlyProGlyProIleProrrpLeuLeuMet 397       Db     1293 ATCTTTGGCTTTGGGCCTTCTTTGAAGTGGGCTCCTGGCCCCATGGTTCATGGTG 1352	Qy       398       SergiuilePheProLeuHisValLysGlyValAlaThrGlyIleCysValLeuThrAsn 417         1353       1:::   :::            Db       1353       GCTGAACTCTTCAGGCCAGGGGTCCAGCTGCCAGCTGCCGTTGCCGTTGCCGTTCTCCAAC	QY     418     TrpleumetalaPheleuvalThrLysGlubheSerSerLeumetGluvalLeuArgPro     437       Db     1413     TGGACCTCAAATTTCATTGTGGGCAATGTGCAGTAGTGGAGCAACTGTGGGGCCC     1472	Qy     438     TyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeu     453       Db     1473     TACGroup Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concordent Concondent Concordent Concordent Concondent Concordent Concorde	QY     454    PheThrLeuPheCysValProGluThrLysGlyLysThrLeuGluGlnIleThr     471       Db     1512     TTCATCTTCACCTACTTCAAAGTTCCTGAAGACTAAAGGCCGGACCTTCGATGAGATCGCT     1571	Qy         472 AlaHisPhe 474           i::                       Db         1572 TCCGGCTTC 1580	RESULT 9 US-09-542-615A-135 ; Sequence 135, Application US/09542615A ; Patent No. 6518276	GENERAL INFORMATION: APPLICANT: Wang, Tongtong APPLICANT: Fan, Liqun APPLICANT: Kalos. Michael D.	Bangur, C Hosken, N Fanger, G NVENTION:	AND DIAGNOSIS OF LUNG CAN 3121.455C8 NUMBER: US/09/542,615A 2000-04-14	8	F TYPE: DNA ; ORGANISM: Homo sapien US-09-542-615A-135	3.76e-43 Length: 514.50 Matches: 46.92% Conservative:	Best Local Similarity: 20.83% Mismatches: 16 Query Match: 20.94% Indels: 99 DB: 4 Gaps: 14	US-09-886-954A-1 (1-477) x US-09-542-615A-135 (1-2856) QY 25 ArgValPheLeuAlaAlaPheAlaAlaAlaAlaLeuGlyProLeuSerPheGlyPheAlaLeu 44	Db 210 CGCCTCATGCTGGCTGTGGGAGGAGGAGCAGTTGGCTTGGCTACAACACT 269 Qy 45 Gly	
0 CGCCTCATGCTGGCTGGGAGGAGGAGGAGCAGTGCCTGCC	45 Gly45 270 GGATTGCATGAATGCCCCCPAGAAGGTCGACGACGACGACGAAGAAAAAAAAAA	TyrSerSerProAla1leProSerLeuGlnArgAlaAlaProProAlaProArgLeu     CGCTANGGGGAGAGCATCCTGGCCCAC	31y61y 8 61161y 8 666660 4	uSerLeu    ::: TTCAATG		CysGly        rgcggc	ArgGly        CGTGGG	<pre>156 LeuLeuGlySerCysValGlnLeuMetValValGlyIleLeuLeuLeuAlaTyrLeuAla 175 11   ::: 642 GCCTGGGCACCCTGCACCAGGCATCGTCGCCGAGGTGTTC 701</pre>	176       GlyTrpValleuGlu	GlyCysValProProSerLeuMetLeuLeuLeuLeuMetCysPheMetProGluThrProArg 207 ::::        :::	PheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeuArgPheLeuTrp       226                          ::::::                   TTCCTGCTCATCAACGGCGAAAACGGGGCCAAAGAGGTGCGGC       875	24 MTGATG 93		MetPhe 27 ::: TTCTAT 10	278 TyralaGluthrIlePheGluGluAlaLysPheLysAspSerSerLeuAlaServalVal 297    ::: :::          :::    056 TACTCCACGAGGATTCGAGAAGGCGGGGGGTGCAGCAGTGTGTGT	lagly       CAGGC		addeedeedeedeedeedeedeedeedeedeedeedeede

us-09-886-954a-1.rni

•

Qy       418       TrpLeuMetAlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgPro       437         Db       1413       TGGACCTCAAATTTCATTGTGGGGCATGTGCTTCCAGTATGTGGGGCCACTGTGTGGGTCCC       1473         Qy       438       TyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeu       453         Qy       438       TyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeu       453         Qy       438       TyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeu	RESULT 11 US-09-221-107-135 Sequence 135, Application US/09221107 Fatent No. 666083 APPLICANT: Wang, Tongtong FILE REFRENCE: 210121.4552 CURRENT APPLICATION NUMBER: US/09/221,107 FILE REFRENCE: 210121.4552 CURRENT FILIGDATE: 1998-12-22 CURRENT APPLICATION NUMBER: US/09/221,107 CURRENT APPLICATION NUMBER: US/09/221,107 SEC ID NO 135 CURRENT APPLICATION NUMBER: US/09/221,107 SEC ID NO 135 SEC ID NO 135 SEC	QY25ArgValPheLeuAlaAlaPheAlaAlaFheAlaAlaLeuGlyProfeuSerPheGlyPheAlaLeu44Db210CGCCTCATGCTGGCGTGGGGGGGGGGGGGGGGGGGGGGG
<pre>85 ValLeuGly</pre>		TyralaGluthrIlepheGluGlualaLysPheLysAspSerSerLeualaservalval         TACTCCACGAGGAGGCGGGGGGGGGGGGGGGGCACCACCATTGGC         TACTCCACGAGGAGGCGGGGGGGGGGGGGGGGGCGCCACCATTGGC         TactrccacGaGGAGGCGGGGGGGGGGGGGGGGGCGCCACCACTGATGGC         ValGlyValleUPheThrAlaValAalaLeulleMetAspArgalaGly         ValGlyValLeUPheThrAlaValAalaLeulleMetAspArgalaGly         ValGlyValLeUPheThrAlaValAalaLeulleMetAspArgalaGly         ValGlyValLeUPheThrAlaValAalaLeulleMetAspArgalaGly         ValGlyValLeUPertacorGGCGTGCGCGCTTGGCGGGGGGGGGGGGGGGGGGGGGG

Page 11

Tue Sep 28 09:09:40 2004

.

us-09-886-954a-1.rni

us-09-886-954a-1.rni

Tue Sep 28 09:09:40 2004

Page 12

2004
0
4
••
σ
0
••
σ
0
28
Sep
Tue

<pre>:::      :::     :::   ::: 3 GTCCCCGGGTCGCCGGCTGGGCCGGTAAACCGGGAGCGCGGGGCTGGG 747 2 LeuArgPheLeuTrpGlySerGluGlnGlyTrpGluAspPro</pre>	III       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	5 ProlleGlyAlaGluGln-SerPheHisLeuAlaLeuLeuArgGlnProGlyIleTyrLy 255     ::: 2CTGGAAAAGGATAACAATAAAGTCTCCTACGGGGGGGGGG	<pre>s sProPheIleIleGlyValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaVa 275            :::    </pre>	<pre>b lMetPheTyrAlaGluThrIlePheGluGluAlaLySPheLysAspSerSerLeuAl 294</pre>	aServalvalValGiyvalIleGInValLeupheThrAlaValAlaAlaLeuIleMe 31.    :::    ArCGAT6GTGGGGGGGGTGGTTAArCrGGGTCTTAACATTACCATTAGGGGGGGGGG	tàspàrgalagiyargargleuleuleuleuleuleuleuleuleuleuleuleuleul	eSerThrSerAlaPheGlyAlaTyrPheLysLeuThrGlnGlyGlyGryProGlyAsnSerSe 351 :                TGTGCTGATCGCC6GCGCTTACGCCATGGGCATTATGGGGGTGGCCG 1152	rHisValAlalleSerAlaProValSerAlaGlnProValAspAlaSerValGlyLeuAl 371	III III GTACTGCT 1163	. aTrpLeuAlaValGlySerMetCysLeuPheIleAlaGlyPheAlaValGlyTrpGlyPr 391        GGTGCTGGCGGCG	olleProTrpLeuLeuMetSerGluIlePheProLeuHisValLysGlyValAlaThrGl 411  :::    :::   ::::	<pre>yIleCysValLeuThrAsnTrpLeuMetAlaPheLeuValThrLysGluPheSerSerLe 431 ::: TTTAGGTACCTGGGGCTGTGGATCGCCTGTTTTCCTGTTTAACCTAATAACCTAATAACTAATAACTAATAACTAATAA</pre>	uMetGluValLeuArgProTyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePheSe 451 		19 Application US/09291922 383776 MATTON: AMATTON: AMATTON: Allen, Steve Hitz, Bill Kinney, Tony Tringey, Coott Tringey, Coott
688 222	4	236 807	255 867	275 927	294 987	313 1047	331 1107	351	1153	371 1164	391 1206	411 1266	431 1326	3 4 6	ESULT 13 S-09-291-922- Sequence 19, Patent No. 6 GENERAL INFO. 6 GENERAL INFO. 6 GENERAL INFO. 6 APPLICANT: APPLICANT: APPLICANT: APPLICANT: TITLE OF IN FILE REFRE CURRENT FIL FILE REFRERE APP CURRENT FIL FALLER FIL EARLIER APP EARLIER APP EARLIER APP EARLIER APP EARLIER FIL EARLIER FIL FIL EARLIER FIL FIL EARLIER FIL FIL EARLIER FIL FIL FIL FIL FIL FIL FIL FIL FIL FIL
da ya	qq	VO da	co P	yo du	δ δ	λο q	QY Db	QY	qu	QV DP	QV DP	λ δ	vo da	ky d	RESULT Sequences APPE APPE APPE APPE APPE APPE APPE APP

			TyrSer 47	GTGATG 181	AspAla 67	:     cacggacgtg 229	LeuGly 87	CGCTGGC 289	ProPhe 107	ATCTTC 349	31yArg 127	36CCGC 409	SerGlu 147	3CCGAG 469		AACATC 529	uGlu 18 	CTCGGC 589	euMetCys 200	STGTTC 649	€	2 5	223 CATCAAG 769	rGlu 22	A	SerPhe 243	853	SerLeu 263	GTCTC 919	lePhe 283 ::
	4		reAlaLeuGly	CTTGGCTATGACATTGGGGGGGAT	ProArgLeuAspAspAl	::: - AATATCACG	LaGlyGlyValLeu	TCGGATCCTTC	euCysSerVal	reccecterc	stLeuLeuGly	FIII::: CCTCATGGCG	covalTyrlle	CGTGTACACG	GlnLeuMetVal	CCGCAGGTGTTCATCAACAT		CCCGCTCCAC	TeuLeuL	CCCCTCC	[[] :::	00	PO	pG1	:::    cgtacccgg	yAlaGluGln		elleGlyVal	crcrceeccereer	ryrAlaGluThrI    ::: ;
	191, 191, 191, 192, 192, 193, 194, 194, 194, 194, 194, 194, 194, 194	<u> </u>	heglyPheAl	TTGGCT	roAla	1	laAlaAl	: : CGCTGT	suLeuLe	rcerer	alTrpMe	ACGGCA	IAlaPi	LCGCGCGC	al	LCCCGG1		CCCCCC	erLeuMet	CCTGCT	⊿—	222	CCAGCO	ча	PAGTCAC	collegi			CATACTGCT	Phen
	Length: Marches: Conservative Mismatches: Indels: Gaps:	-922-19 (1-1914	uSer	:::::: cctccatgcctctgtcatcc	AlaProP	AGAAGGACCTG	aValValThrLeuGlyAla	CAGCTGGAGATCCTGGGATCCTCAGTCTCTACTCGCTGT	aGlyArgLysLeuSerLeuLeuLeuCysSerValProPh	GGCGCCGCTTGACCG	eThrAlaAlaGlnAspValTrpMetLeuLeuGlyGl	TTCGTGGGCTCGTTGCTCATGGGTTTTCGCCGTCATGCGCGGCCG	uAlaCysGlyValAlaSerLeuValAlaProValTyrIleSerGlu	SCTACGGGGGGCATGAI	gGlyLeuLeuGlySerCysV	SCTTCCTGACCACCTTCC	GlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLe	CCAACTTCGCGTTCGC	oProS	scecaciticcerceecc	rgPheteuLeuThrGlnHis/   :::   ::: :::	<b>3GCTGGTCTTGAAGG</b>	GTGCTAGAGAAGACCTCTGCCACAGAGGAGGCCGGCCGAGGGGGCTGGC		GCCGCGGCGGGGATTCCCGAAGGGCCTTCGACGGGGGACGTAGT	TrpGluAspProPr	:::  GTGGAAG	етугьу	TGTCCGACG	rGlyValAsnAlaValMetI      ::::::   :::
	1.35e-42 566.550 466.558 27.79% 20.61% 4	7) × US-09-291	aPheAlaA	L CATCCTGG	alleProSerLeuG	 cgcccatgtacatcaagaaggag	erTrpPheGlyAlaV	GATCCTGATCGGGA	euValAspArgAlaG	ggacgrccgacacgearcgg	yPheAlaValIleT	CTCGTTGCTCATGG	euLeuThrGlyLeuAlaCysG	CGGAGTCGGTGTGGG	- H -	Arcreecteceecercceree	LeuAlaTyrLeuA	JCT TGGCTACCTGT(	rpArgTrpLeuAlaValLeuGlyCysValPr.	CATGCTCGCCATTGC	PheMet ProGluThrProArgPl	υ	BAAGACCTCTGCCAC		GGGATTCCGAAGGC		 CAAGGCGGCGGTGAGTTGCAGGTGT	aLeuLeuArgGlnPr	carccreacccc	nGlnLeuSe
114 Zea mays 19	es:	-1 (1-47	ษั	ATATGTGC	SerProAl	I TGGAG	AlaAlaSe	CAGCTGGA	GlyTrpLe	GCGCGGAC	ValAlaGI	TTCGTGGG	LeuLeuTh	TTCGTGGCCGGAGT	IleAlaTy	ATCTCGCC	GlyIleLe	GGCATCCT	TrpArgTr	réécecer	PheMetPro	TGCATGCC	TGCTAGAG		200000000	GlnGly	CAAGGCGGG	HisLeuAld	AAGCTCATO	MetAlaPheGl
LENGTH: 19 TYPE: DNA ORGANISM: 09-291-922-	No.: No.: It Simila Match:	886-954A	28	122	48	182	68	230	88	290	108	350	128	410	148	470	89	50	181	290	10	650	10	224	770 0	230 0	830 (	244 F	860 2	264 N
; LE ; TY ; OR US-09-	Alignment Pred. No: Score: Percent Si Best Local Query Matc DB:	-60-SU	οy	Ъb	QY	qq	QY	qq	Q	Ъb	δy	дŋ	QY	qа	QY	qq	λο đ	an	δ	qD	8 1	a è	7 A	QY	đ	oy	дD	QY	qu	QV

us-09-886-954a-1.rni

дD	920	CTTCCAGCAGGCTTCTGGCAGCGACTCCGTCGTCCAGTACAGCGCCCGCC
70 Z	284	GluGluAlaLysPheLysAspSerSerLeuAlaSerValValGlyVal 300 :::     ::: **********************************
	480	60T
δ d	301 1040	<pre>IleGinvalLeuPheThrAlavalAlaAlaLeuIleMetAspArgAlaGiyArgArgLeu 320 AccAAaGeTrcTThTATTATTATATATALaLeuIleMetAspArgAlaGiyArgArgLeu 320 AccAAaGeTrcTTATCTGGTGGCCACGTTCCTGCTGGACGGGGGGGGGGG</pre>
QY	321	0
a S	341	CTGCTGGTGGTCGGCGGGGGGGGGGGGGGGGGGGTGGTTGTCTGCCTCGGCTCGGTCG 1153 IvsieuthrdlnglvGlvProglv&nserserHisvalblallsGerAlaProValSer 360
2 A	1154	GGGCTCACCGTCGCG 11
QY	361	AlaGlnProValAspAlaSerValGlyLeuAlaTrpLeuAlaValGlySer 377
qq	1169	GGGCATCACCCGGACCCAAGGTCGCGTGGGCCGTCGCCCTGTGCGTCATCGCGTCA 1222
VO 40	378	MetCysLeupheIleAlaGlyPheAlaValGlyTrpGlyProlleProTrpLeuLeuWet 397 accrnertormacantormuncharcharcharcharcharcharcharcharcharchar
	4 0	1 7
g q	1283	CGGAAATATTCCCGCTGCGGGGGGGGGGGGGGGGGGGGG
QY	418	TrpLeuMetAlaPheLeuValThrLysGluPheSerSerLeuMetGluValLeuArgPro 437
qu	1343	CSCGTCACCAGCGCCGTCATCTCTCTCTCTCTCTCCTCCCATCATC 1402
QY	438	TyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePheSerValLeuPheThrLeuPhe 457    :::
qЦ	1403	GGCGGCAGCTICTICTICTACTCCGGGCATCGCCGCGGGCGCGCGCGGCAGGTTITCTTCTTCACG 1462
νς d	458 1463	CysValProGluThrLysGlyLysThrLeuGluGlufle 470    :::       :::             ::::: TGCTTCCCGGAGACACGCGGCCGGACGAGAGAATG 1501
RESULT US-09-5 Seque Seque APPL APPL APPL APPL APPL APPL APPL APP	No. 1 Solution State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State Sta	<pre>-025-8 -025-8 wo. 6303373 wo. 6303373 wo. 6303373 wo. 6303373 wo. 6303373 wo. 630373 wo. 630373 wo. 60038 wo. 6004 wo. 6609 wo. 6609 wo. 6609 wo. 6609 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004 wo. 6004</pre>

y Mat	: t:	20.31% Indels: 4 Gaps:		
09-886	-954	954A-1 (1-477) x US-09-59		
	9 455		PheLeu        TTTCTG	28 499
	29		SerSer	48
	500	00 AAGAGGACTTGC	TTAAGGGAC	520
	49	<pre>49 ProAlaIleProSerLeuGInArgAlaAlaProProAlaProArgLeuA 49 [                   40                   </pre>	spAspAlaAla   } cremacroarc	68 576
	v v	21 CCAOCITTICCCCCCCCCAOOCCCCCCCCCCCCCCCCCCC		
		77 TTTTCCGFGGCGCGCATGATTTCCTCCTTCCTCATTGGCTATCA	crcrcAG	
	89	9 TrpLeuValAspArgAl	PheVal	108
	628	N	GCGGTG	675
	109	09 AlaGlyPheAlaValIleThrAlaAlaGlnAspValTrpMetL	euLeuGly	125
	676	76 CTGGGGGGGGGCGCTGGGCCTGGCCCAACGCTGCCTCCTATGAAAT	ATCCTT	735
	126	26	Tyrile    ::: TACGTG	145 795
	4	46 SerGlulleAlaTyrProAlaValArgGlyLeuLeuGlySerCysValGlnLe	tVa	ف
	ō	96 GGGGAGATTGCTCCCACTCACCTGCGGGGGCGCCCTGGGGAGATTGCTCCAACTAACT	GGCCATT	855
	166	66 ValValGlyIleLeuLeuAlaTyrLeuAlaGlyTrpValLeuGlu    :::         :::    :::		180
	856	56 GTTATCGGCATTCTGATCGCCCAGGTGCTGGGCTTGGAGTCCCT	CCTGGGCACT	606
	181	81TrpArgTrpLeuAlaValLeuGlyCysValProProSerLeuMe	LeuLe	ō,
	910	10	créerc	969
	198	<pre>3 LeuMetCysPheMetProGluThrProArgPheLeuLeuThrGlnHisAr</pre>	gArgGln	216 1029
	217	7 GluAlaMetAlaAlaLeuArgPheleuTrpGlvSerGluGlnGly		31
	1030	030 CCTGCCAGAAAGAGTCTGAAGGCCTGACAGGCTGGCCGATGTTTCTGGAGT	GCTGGCT	1089
	232	N	ArgGln	250
	1090	.090 GAGCTGAAGGATGAGGGAAGCTGGAGGGTGAGGGGGGGGG	CAGCTC	1149
	251	51	aPheGln	267
	1150	50 CTGGGCAGCCGTACCCGGCAGCCCCCTGATCATTGCGGTC	AGCCAG	1209
	268	268 GlnLeuSerGlyValAsnAlaValMetPhetPralaGluThrIlePheGluGluAlaLy	AlaLys	287
	1210	210 CAGCTCT	GCAGGG	1269
	288	<pre>288 PheLysAspSerSerLeuAlaSerValValValGlyValIleGlnValLeuPheThrAl</pre>	ThrAla	307
	1270	270	ACCTTG	1329
	308	08 ValAlaAlaLeuIleMetAspArgAlaGlyArgArgLeu    :::    :::::::::	rGlyVal	327
	1330	330 ercreererereereereereereereereereereeree		1380

,

5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	328 1381 348 348 1387 1387 368 1447 368 1507 1507	ValMetValPheSerThrs 	ValMetValPheSerThrSerAl GlyAsnSerSerHisValAlall GGGGGCATGGTGGCGTGTGCCAT ValGlyLeuAlaTrpLeuAlaVa cCAGCCATGGTAGCTACTCCAT CCAGCCATGGTAGCTACCTTCCAT GlyTrpGlyProlleProTrpLe GlyTrpGlyProlleProTrpLe GGCCTGGCCCCATTCCTTGGTT GGCCTTGGCCCCATTCCTTGGTT GalAlaThrGlyIleCysValLe	<pre></pre>	8 8 8 7 7 3 9 7 3 7 3 7 4 7 3 9 7 7 3 9 7 7 3 9 7 7 3 9 7 7 7 7 7
8 & 8 & 8 & 8 & 8	1567 428 1627 448 1666 462 462 1726	GCAĠĊĊATGGCTGGGCTGGGCTG PheSerSerLeuMetGluv :::     TTCCAGTATGTTGCGGAGG CYSTlePheSerValLeu- :::   :::       CTTCTATTTGCGGTCCTCC ThrLysGlyLysThrLeuG    :::    :::	GCAĠĊĊATGGCTGTGGCTGGTTTCTCTCAĊHĠG PheSerSerLeuMetGluValLeuArgProTyr     :::     ::: TrCcAGTATGTTGCGGAGGCTATGGGGGCCTAC Cys1lePheSerValLeu	GCAĠĊĊATGGCTGGGTTGCTGĂĊĨĠĠGCGAGC PheSerSerLeuMetGluValLeuArgProTyrGlyAla :::     :: TTCCAGTATGTTGCGGAGGCTATGGGGCCCTAC CysIlePheSerValLeuphe' :::   :::   : CTTCTATTTGCGGTCCTCGGGGCTTGGGGCTTCTTCATTCI ThrLySGlyLysThrLeuGluGInIleThrAlaHisPhe    :::    :::    :::    ::      :	GCAĠĊĊATGGCTGGTTTCTCCĂĂĊĬĠĞACGAGCAACTTĊATCATTGGCATGGGGT 162 PheSerSerLeuMetGluValLeuÅrgProTyrGlyAlaPheTrpLeuÅlaSerÅlaPhe 447 :::     :::     !:: TTCCAGTATGTTGGGGGGCTATGGGGGCCTACGTCTTC 166 CYST1ePheSerValLeuPheThrLeuPheCysValProGlu 461 :::   :::   :
RESULT CONTRACTOR APPR APPR APPR APPR APPR APPR APPR AP	9 1 9 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 4 DC/80 D	919172 er M. CANCER MARKERS (5/09/919,172 -30 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -222,469 -2	
ing the street.	o E E	: ity:	55 496 285 285 298 200 205 8 205 8 4 205	Length: Matches: Conservative: Mismatches: Indels: Gaps:	5227 147 147 183 100 15
US-09- QY Db	886-954A- 23 G 60 G	v-l (1-477) x US- GlyArgArgValPheL         GGGACCCTGGTTTTC-	x US-09-919 alPheLeuAlaA       TTTTCACTG	-172-79 (1-5227) laPheAlaAlaAlaLeu laPheAlaAlaAlaLeu TCATCACTGCTGTGCTG	1 (1-477) x US-09-919-172-79 (1-5227) GlyArgArgValPheLeuAlaAlaPheAlaAlaLeuGlyProLeuSerPheGlyPhe 42           GGGACCCTGGTTTTCACTGTCATCACTGCTGGGGTTCCTTCCAGTTTGGATAT 116

VQ qq	43 AlaleuGlyTyr46 :::    117 Gacarrancarraangcarrancaarraanaaranaaraanaanaanaanaanaanaanaana
3 8	
du du	9
QY	51 IleProSerLeuGlnArgAlaAlaProProAlaProArgLeuAspAsp 66
дa	237 CTGCCCACAATCATCATCAATGAACCCCAAAACCACCCCTTGGGCTGAGGAAGAGACT 296
QY	67 AlaAlaAlaSerValThrLeu 78 
цb	297 GIGGCAGCTGCTCAACTAATCACCATGCTCTGGTCCCTGTGTTATCCAGCTTTGCAGTT 356
δγ	79 GIYAlaAlaGIYGIYValLeuGIYGIYTrpLeuValAspArgAlaGIYArgLeu 98 
dd	357 Géregaargacregcarcarrerrregregeregeregeregageregaagaarcaaa 416
δγ	99 SerLeuLeuLeuCysSerVal
дD	417 GCCATGTTAGTAGCAAAACATTCTGTCATTAGTTGGAGGCTCTCTGATGGAGGGTTTTCAAAAA 476
QY	Asp
qq	477 TTGGGACCATCTCATATACTTATATTGCTGGAAGAAGAAGAAGAACATATCAGGACCATATAT 530
Q	134 CysGlyValAlaSerLeuValAlaProValTyrIleSerGluIleAlaTyrProAlaVal 153
qa	531 TGTGGGCTAATTTTCAGGCCTGGTTCCTATGTATATCGGTGAAATTGCTCCAACCGCTCTC 590
QY	154 ArgGiyLeuLeuGlySerCysValGInLeuMetValValValGlyIleLeuLeuAlaTyr 173
đũ	591 AGGGAGCACTTTGGCACTTTTCATCATCGCTGGCCATCGCCACGGGCATTCTTATTAGCAGC 650
σy	174 LeuAlaGlyTrpValLeuGlu185 ;;
qũ	651 ATTATTGGTCTTGAATTTATCTTGGGCAATTATGATCTGTGGCACATCTTGCTT 704
QY	186 ValLeuGlyCysValProProSerLeuMetLeuLeuLeuMetCysPheMetProGluThr 205
дŋ	705 GGCCTGGTGGTGGGGGGGGGGGGGGGGGGGGGGGGGGG
Q	206 ProArgPheLeuLeuThrGlnHisArgArgGlnGluAlaMetAlaAlaLeuArgPhe 224
qq	765 CCCAGATACCTTTACATCAAGTTAGATGAGGAAGTCAAAGCCAAAACAAAGCTTGAAAAGA 824
Q	2
qq	ย
δy	37 I
qu	885 GCATCGAGTGAGCAGAAAGTCTCTATAATTCAGCTCTTCACCAATTCCAGCTACCGACAG 944
οv	256 ProPheIleIloGlyValSerLeuMetAlaPheGlnGlnLeuSerGlyValAsnAlaVal 275
ДD	945 CULATTCTAGTGGCACTGATGCTGGGCTCAGCAATTTTCCGGAATCAATGGCATT 100
Q	276 MetPheTyrAlaGluThrIlePheGluGluAlaLysPheLysAspSerSerLeuAlaSer 295
qu	1005 TTTTACTACTAGCAACCAGCAACCAGCAGGCAGGCAGGCA
σy	296 ValValValGlyValIJeGlnValLeuPheThrAlaValAlaLeuIJeMetAspArg 315
рb	1065 ATTGGAGTTGGCGCTGTAAACATGGTTTTTCACTGCTGCTCTTCTTGTGGGAGGAGG 112
QY	00
дa	1125 GCAGGGCACGTTCTCTCTTCTTATTGGAATGAGTGGGATGTTTGTT
QY	334 SerAlaPheGlyAlaTyrPheLysLeuThrGlnGlyGlyProGlyAsnSerSerHisVal 353

737GT Ala11eSerAlaProValSerAlaGInProValAsp-AlaSerValGIyLeuAlaTrp-L       6(CATCTTCATGTCACHGGGACTTGTGCTGCTGATAAGTTCTCTTGGACTGAGTAACTG 3 euAlaValGIySerMetCysLeuPhelleAlaGIyPheAlaValGIyTrpGIyProIleP 5 euAlaValGIySerMetCysLeuPhelleAlaGIyPheAlaValGIyTrpGJyProIleP 5 euAlaValGIySerMetCysLeuPhelleAlaGIyPheAlaValGIyTrpGGACGGACCGATCC 3 cofrpLeuLeuMetSerGluIlePheProLeuHisValLySGIyValAlaThrGlyIIeC 6 ctGGTTCATGGCGAGTTTTCAGTCAGGCTCTTTGGAATAGCGATGG 13 ysValLeuThrAsnTrpLeuMetAlaPheLeuValThrLySGIuPheSerSerLeuMetG 13 ysValLeuThrAsnTrpLeuMetAlaPheLeuValThrLySGIuPheSerSerLeuMetG 13 ysValLeuThrAsnTrpLeuMetAlaPheTrpLeuAlaPheCysIlePheSerSerLeuMetG 14 ysValLeuThrAsnTrpLeuMetAlaPheTrpLeuAlaSerAlaPheCysIlePheSerValL 5 ctGGATTCAGGGACTGGAATTCCTTTGTGGGCTGTGCTTTGCGGTGGGTG	Ala1leSerAlaProValSerAlaGlnProValAsp-AlaSerValGlyLeuAlaTrp-L       373	rgcrgcrgAArAAGricTcrrgGÄcTcAGrrAcrg 1235 elleAlaGlyPheAlaValGlyTrpGlyProfleP 393	::::::::::::::::::::::::::::::::::::::		413 ysvalleuthrasnTrpLeumetAlaPheLeuValthrLysGluPheSerSerLeumetG 433 ::::       ::::       1356 ctGCATTCAGCAATTTCATTCATTGTAGCTCTGTGTTTCCAGTACATTGCGG 1415	<pre>luValLeuArgProTyrGlyAlaPheTrpLeuAlaSerAlaPheCysIlePheSerValL 453 ::       ActrcrGrGGACCTTATGTGTTTTTCCTCTTTGCTGGAGTGCTCTGGCCTTTACCC 1472</pre>	euPheThrLeuPheCysValProGluThrLysGlyLysThrLeuGluGlnIleThrAlaH 473                                    :::    :::    TGTTTACATTTTTAAAGTTCCAGAAAGCCAAAGGAAAGTCTTTTGAGGAAATTGCTGCAG 1532		
	1173	1176 GCCATCTTCATGTCAGTGGGGGCTTG 373 euAlaValGlySerMetCysLeuPhe	::::::::::::::::::::::::::::::::::::::	::::::::       1296 CCTGGTTCATGGTGGCTGAGTTTTT	<pre>413 ysvalleuThrasnTrpLeuMetAla 413 ysvalleuThrasnTrpLeuMetAla 556 crgcArrcagcAarrgaAccrgcAar</pre>	433 luValLeuArgProTyrGlyAlaPhe ::       1416 ACTTCTGTGGGACCTTATGTGTTTTT	453 eupheThrLeuPheCysvalProGlu 453 [        1473 TGTTTACATTTTTTAAAGTTCCAGAJ	473 isPheGlu 475	1533 AATTCCAA 1540

Search completed: September 28, 2004, 04:18:30 Job time : 152 secs

e